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PREFACE TO THIRD EDITION
THE book has again been mostly rewritten to bring in various’
improvements. The chief of these is the use of the notation of bra
and ket vectors,  which  1 have developed since  1939. This notation
allows a more direct  connexion to be made between the formalism
in terms of the abstract  quantities corresponding to states and
observables and the formalism in terms of representatives-in fact
the two formalisms become welded into a Single comprehensive
scheme. With the help of this notation several of the deductions in
the book take a simpler and neater form.

Other substantial alterations include :
(i) A new presentation of the theory of Systems with similar

particles,  based on Fock’s treatment of the theory of radiation
adapted to the present notation. This treatment is simpler and more
powerful than the one given in earlier editions of the book.

(ii) A further  development of quantum  electrodynamics,  including
the theory of the Wentzel field.  The theory of the electron in inter-
act’ion  with the electromagnetic  field is oarried as far as it tan be at
the present time without getting on to speculative  ground.

P. A. M. D.
ST. JOHN% COLLEGE, CAMBRIDGE

21 April 1947 .



FROM THE
PREFACE TO THE SECOND EDITION

THE book has been mostly rewritten. 1 have tried by carefully over-
hauling the method of presentation to give the development of the
theory in a rather less abstract  form, without making any sacrifices
in exactness of expression or in the logical Character of the develop-
ment. This should make the work suitable for a wider circle  of
readers, although the reader who likes abstractness for its own sake
may possibly prefer the style of the first edition.

The main Change has been brought about by the use of the word
‘state ’ in a three-dimensional non-relativistic sense. It would seem
at first  sight a pity to build up the theory largely on the basis of non-
relativistic  concepts. The use  of the non-relativistic meaning of
‘state ‘, however, contributes  so essentially to the possibilities of
clear  exposition as to lead one to suspect  that the fundamental ideas
of the present quantum  mechanics are in need of serious alteration at

’just tbis Point,  and that an improved theory would agree more closely
with the development here given than with a development which
aims -at preserving the relativistic  meaning of ‘state’ throughout.

P. A. M. D.
THE INSTITUTE FOR ADVANCED STUDY

PRINCETON

27 November 1934



PROM THE
PREFACE TO THE FIRST EDITION

THE methods of progress in theoretical physics have  undergone a
vast Change during  the present century. The classical fradition
has been to consider the world to be an association  of observable
objects (particles,  fluids,  fields, etc.) moving about according  ‘to
deflnite laws of forte,  so that one could form a mental picture in
space  and time of the whole scheme. This led to a physics whose aim
was to make assumptions about the mechanism and forces  connecting
these observable objects, to account  for their behaviour in the
simplest possible way. It has become  increasingly evident ia recent
times, however, that nature  works  on a different plan. Her funda-
mental laws do not govern the world as it appears in our mental
picture in any very direct  way, but instead they control a substra-
turn of which  we cannot form a mental picture without intro-
ducing irrelevancies. The formulation of these laws requires the use
of the mathematics of transformations. The important things in
the world appear as the invariants (or more generally the nearly
invariants, or quantities with simple transformation properties)
of these transformations. The things we are immediately aware of
are the relations of these nearly invariants to a certain frame of
reference, usually one Chosen  so as to introduce special  simplifying
features which  are unimportant  from the Point  of view of general
theory.

The growth of the use of transformation theory, as applied first to
relativity and later to the quantum  theory, is the essence  of the new
method in theoretical physics. Further  progress lies in the direction
of making our  equations invariant under  wider and still wider trans-
formations. This state of affairs is very satisfaotory from a philo-
sophical Point  of view, as implying an increasing recognition of the
pst played by the observer in himself introducing the regularities
that appear in his observations, and a lack  of arbitrariness in the ways
of nature, but it makes  things less easy for the learner of physics.
The new theories, if one looks apart from their mathematical setting,
are built up from  physical concepts which  cannot  be explained in
terms  of things  previously known to the Student, which  cannot  even
be explained adequately in words at all, Like the fundamental con-
cepts (e.g. proximity, identity) which  every one must learn on his
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arrival  into the world, the newer  concepts of physics tan  be mastered
only by long familiarity with their properties and uses.

From the mathematical side the approach to the new theories
presents no difficulties, as the mathematics required (at any rate that
which is required for the development of physics up to the present)
is not essentially different from what has been current  for a consider-
able time. Mathematics is the tool specially suited for dealing with
abstract concepts of any kind and there is no limit to its power in this
field. For this reason a book on the new physics, if not purely descrip-
tive of experimental work, must be essentially mathematical. All the
same  the mathematics is only a tool and one should learn to hold the
physical ideas in one’s mind without reference to the mathematical
form. In this book 1 have tried to keep the physics to the forefront,
by beginning with an entirely physical chapter  and in the later work
examining the physical meaning underlying the formalism wherever
possible. The amount of theoretical ground one has to cover before
being able to solve Problems  of real practical value is rather large, but
this circumstance is an inevitable consequence of the fundamental
part played by transformation theory and is likely  to become more
pronounced in the theoretical physics of the future.

With regard to the mathematical form in which the theory tan  be
presented, an author must decide at the outset  between two methods.
There is the symbolic method, which deals  directly in an abstract way
with the quantities of fundamental importante (the invariants, etc.,
of the transformations) and there is the method of coordinates or
representations, which deals with sets of numbers corresponding to
these quantities. The second  of these has usually been used for the
presentation of quantum  mechanics (in fact it has been used practi-
cally  exclusively with the exception of Weyl’s book Gruppentheorie
und Quantenmechanik). It is known under  one or other of the two
names ‘ Wave Mechanics ’ and ‘ Matrix Mechanics ’ according to which
physical things receive emphasis in the treatment, the states of a
System  or its dynamical variables. It has the advantage that the kind
of mathematics required is more familiar to the average  Student, and
also it is the historical method.

The symbolic  method, however, seems to go more deeply into the
nature of fhings. It enables one to exuress  the physical laws in a neat
and concise way, and will probably be increasingly used in the future
as it becomes  better understood and its own special  mathematics gets
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developed. For this reason  1 have Chosen  thc symbolic  method,
introducing the representatives later  merely as 51; aid to practical
calculation. This has necessitated a completc break from the histori-
cal line of development, but this break is an advantage through
enabling the approach  to the new ideas to be made as direct  as
possible.

ST.JOKN'S COLLEGE,CAMBRIDGE
29 May 1930

P.  A. M. D.
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THE PRINCIPLE 03’ SUPERPOSITION

1. The need for a quantum  theory
CLASSICAL  mechanics has been developed continuously from the time
of Newton and applied to an ever-widerring range of dynamical
Systems, including  the electromagnetic field in interaction  ,with
matter. The underlying ideas and the laws governing their applica-
tion form a simple and elegant scheme, which one would be inclined
to think could not be seriously modified without having all its

’ attractive features spoilt. Nevertheless it has been found possible to
set up a new scheme, called quantum  mechanics, which is more
suitable for the description of phenomena on the atomic scale  and
which is in some respects  more elegant and satisfying than the
classical scheme. This possibility is due to the changes  which the
new scheme involves being of a very profound Character and not
clashing  with the features of the classical theory that make it so
attractive, as a result of which all these features tan  be incorporated
in the new scheme.

The necessity for a departure from classical mechanics is clearly
shown by experimental results. In the first place the forces known
in classical electrodynamics  are inadequate for the explanation of the
remarkable stability of atoms and molecules, which is necessary in
Order  that materials may have any definite physical and Chemical
properties at all. The introduction  of new hypothetical forces will not
save the Situation, since there exist general principles of classical
mechanics, holding for all kinds of forces,  leading  to results in direct
disagreement with Observation. For example, if an atomic System  has
its equilibrium disturbed in any way and is then left alone, it will be set
in oscillation  and the oscillations will get impressed on the surround-
ing electromagnetic field, so that their frequencies may be observed
with a spectroscope. Now whatever the laws of forte governing the
equilibrium, one would expect to be able to include the various fre-
quencies in a scheme comprising certain fundamental frequencies and
their harmonics.  This is not observed to be the case.  Instead, there
is observed a new and unexpected connexion between the frequencies,
called Ritz’s Combination Law  of Spectroscopy, according to which all
the frequencies tan  be expressed as differentes  between certain terms,

3696.67 73



2 THE PRINCIPLE OF SUPERPOSITION §l

the number of terms being much  less than the number of frequencies.
This law is quite unintelligible from the classical Standpoint.

One might try to get over the difficulty without departing from
classical mechanics by assuming each  of the spectroscopically ob-
served frequencies to be a fundamental frequency with its own degree
of freedom, the laws of forte being such that the harmonic  vibrations
do not occur. Such a theory will not do, however, even apart from
the fact that it would give no explanation of the Combination Law,
since it would immediately bring one into conflict with the experi-
mental evidente on specific heats. Classical statistical mechanics
enables one to establish a general connexion between the total number
of degrees of freedom of an assembly of vibrating Systems and its
specific heat. If one assumes all the spectroscopic frequencies of an
atom to correspond to different degrees of freedom, one would get a
specific heat for any kind of matter very much  greater than the
observed value. In fact the observed specific heats at ordinary
temperatures are given fairly weh  by a theory that takes into account
merely the motion of each  atom as a whole and assigns no internal
motion to it at all.

This leads us to a new clash  between classical mechanics and the
results of experiment. There must certainly be some internal motion
in an atom to account for its spectrum,  but the internal degrees of
freedom, for some classically inexplicable reason, do not contribute
to the specific heat. A similar clash  is found in connexion with the
energy of oscillation  of the electromagnetic  field in a vacuum. Classical
mechanics requires the specific heat corresponding to this energy to
be infinite, but it is observed to be quite finite. A general conclusion
from  experimental results is that oscillations of high frequency do
not contribute  their classical quota to the specific heat.

As another illustration of the failure of classical mechanics we  may
consider the behaviour of light. We have, on the one hand, the
phenomena of interference and diffraction, which  tan be explained
only  on the basis of a wave theory; on the other, phenomena such as
photo-electric emission and stattering  by free electrons,  which  show
that light is composed of small particles.  These particles,  which
are called photons, have each a definite energy and momentum, de-
pending on the frequency of the light, and appear to have just as
real an existente as electrons,  or any other particles  known in physics.
A fraction  of a Photon  is never observed.
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Experiments have shown that this anomalous behaviour is not
peculiar to light, but is quite general. All material particles  have
wave properties, which tan  be exhibited under  suitable conditions.
We have here a very striking and general example of the breakdown
of classical mechanics-not merely an inaccuracy in its laws of motion,
but an inadequucy  of  its concepts to supply us with a description  of
atomic  events.

The necessity to depart from classical ideas when one wishes to
account for the ultimate structure of matter may be Seen, not only
from  experimentally established facts,  but also from  general philo-
sophical grounds. In a classical explanation of the constitution  of
matter, one would assume it to be made up of a large number of small
constituent Parts  and one would Postulate laws for the behaviour of
these Parts,  from which the laws of the matter in bulk could be de-
duced.  This  would not complete the explanation, however, since  the
question of the structure and stability of the constituent Parts  is left
untouched. To go into this question, it becomes necessary to postu-
late that each  constituent part is itself made up of smaller Parts,  in
terms of which its behaviour is to be explained. There is clearly no
end to this procedure, so that one tan  never arrive at the ultimate
structure of matter on these lines. So long as big  and small  are merely
relative concepts, it is no help to explain the big in terms of the small.
It is therefore necessary to modify classical ideas in such a way as to
give an absolute meaning to size.

At this Stage it becomes  important to remember that science  is
concerned only with observable things and that we tan observe an
Object  only by letting it interact with some outside influence. An act
of Observation is thus necessarily accompanied by some disturbance
of the Object  observed. We may define an Object  to be big when the
disturbance accompanying our Observation of it may be neglected,
and small when the disturbance cannot  be neglected. This definition
is in close  agreement with the common meanings of big and small.

It is usually assumed that, by being careful, we may tut down the
disturbance accompanying our observation to any desired extent.
The concepts of big and small are then purely relative and refer to the
gentleness of our means of Observation as well as to the Object  being
described. In Order  to give an absolute meaning to size, such as is
required for any theory of the ultimate structure of matter, we have
to assume that there is  a lz’mit  to the$neness  of ourpowers  of observati&
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and the  smallness  of the dccompanying disturbance-a limit which is
inherent in the n&ure  of things and tun  never be surpassed by improved
technique or  increused skill on the part of the observer. If the Object  under
Observation is such that the unavoidable limiting disturbance is negli-
gible, then the Object  is big in the absolute sense and we may apply
classical mechanics to it. If, on the other hand, the limiting dis-
turbance  is not negligible, then the Object  is small in the absolute
sense and we require a new theory for dealing with it.

A consequence of the preceding discussion is that we must revise
our ideas of causality. Causality applies only to a System  which is
left undisturbed. If a System  is small, we cannot observe it without
producing a serious disturbance and hence  we cannot expect to find
any causa1 connexion between the results of our observations.
Causality will still be assumed to apply to undisturbed Systems and
the equations which will be set up to describe an undisturbed System
will be differential equations expressing a causa1 connexion between
conditions at one time and conditions at a later time. These equations
will be in close  correspondence with the equations of classical
mechanics, but they will be connected only indirectly with the results
of observations. There is an unavoidable indeterminacy in the calcu-
lation of observational results, the theory enabling us to calculate in
general only the probability of our obtaining a particular  result when
we make an Observation.

2. The polarization of photons
The discussion in the preceding section  about the limit to the

gentleness with which observations tan  be made and the consequent
indeterminacy in the results of those observations does not provide
any quantitative basis for the building up of quantum  mechanics.
For this purpose a new set of accurate laws of nature is required.
One of the most fundamental and most drastic  of these is the Principle
of Superposition of States. We shall lead up to a general formulation
of this principle through a consideration of some special  cases,  taking
first the example provided by the polarization of light.

It is known experimentally that when plane-p,olarized light is used
for ejecting photo-electrons, there is a preferential direction  for the
electron emission. Thus the polarization properties of light are closely
connected with its corpuscular properties and one must ascribe a
polarization to the photons. One must consider, for instance, a beam
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of light plane-polarized in a certain direction as consisting of photons
each  of which is plane-polarized in that direction and a beam of
circularly polarized light as consisting of photons each  circularly
polarized. Every Photon  is in a certain state  of poihrization,  as we
shall  say. The Problem  we must now consider is how to fit in these
ideas with the known facts about the resolution of light into polarized
components and the recombination of these components.

Let us take a definite case. Suppose we have a beam of light passing
through a crystal of tourmahne, which has the property of letting
through only light plane-polarized perpendicular to its optic axis.
Classical electrodynamics  teils  us what will happen for any given
polarization of the incident beam. If this beam is polarized per-
pendicular to the optic axis, it will all go through the crystal; if
parallel to the axis, none of it will go through; while if polarized at
an angle CY to the axis, a fraction  sin2a  will go through. How are we
to understand these results on a Photon  basis?

A beam that is plane-polarized in a certain direction is to be
pictured as made up of photons each  plane-polarized in that
direction. This picture leads to no difficulty in the cases  when our
incident beam is polarized perpendicular or  parallel to the optic axis.
We merely have to suppose that each  Photon  polarized perpendicular
to the axis Passes  unhindered and unchanged  through the crystal,
while each  Photon  polarized parallel to the axis is stopped and ab-
sorbed. A difhculty  arises,  however, in the case  of the obliquely
polarized incident beam. Esch of the incident photons is then
obliquely polarized and it is not clear  what will happen to such a
Photon when it reaches  the tourmalme.

A question about what will happen to a particular  Photon  under
certain conditions is not really very precise.  To make it precise  one
must imagine some experiment performed having a bearing on the
question and inquire what. will be the result  of the experiment- Only
questions about  the results of experiments have a real significance
and it is only such questions that theoretical physics  has to consider.

In our present example the obvious experiment is to use an incident
beam consisting of only a Single Photon  and to observe what appears
on the back side of the crystal. According to quantum  mechanics
the result of this experiment will be that sometimes one will find a
whole Photon,  of energy equal to the energy of the incident Photon,
on the back side and other times one will find nothing. When one
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Gands a whole Photon,  it will be polarized perpendicular to the optic
axis. One will never find only a part of a Photon  on the back side.
If one repeats the experiment a large number of times, one will find
the Photon  on the back side in a fraction  sin2cY of the total number
of times. Thus we may say that the Photon  has a probability sin2cu.
of passing  through the tourmahne and appearing on the back side
polarized perpendicular to the axis and a probability cos2, of being
absorbed. These values for the probabilities lead to the correct
classical results for an incident beam containing a large number of
photons.

In this way we preserve the individuality of the Photon  in all
cases.  We are able to do Gis, however, only because  we  abandon the
determinacy of the classical theory. The result of an experiment is
not determined, as it would be according to classical ideas, by the
conditions under  the control of the experimenter. The most that tan
be predicted is a set of possible results, with a probability of occur-
rence  for each.

The foregoing discussion  about the result of an experiment with a
Single obliquely polarized Photon incident on a crystal of tourmaline
answers all that tan legitimately be asked about what happens to an
obliquely polarized Photon  when it reaches  the tourmahne. Questions
about what decides whether the Photon  is to go through or not and
how it changes  its direction  of polarization when it does go through
cannot be investigated by experiment and should be regarded as
outside the domain of science. Nevertheless some further  description
is necessary in Order  to correlate  the results of this experiment with
the results of other experiments that might be performed with
photons and to fit them all into a general scheme. Such further
description should be regarded, not as an attempt to answer  questions
outside the domain of science, but as an aid to the formulation of
rules  for expressing concisely the results of large numbers of experi-
ments.

The further  description provided by quantum  mechanics runs as
follows. It is supposed that a Photon pobrized obliquely to the optic
axis may be regarded as being partly in the state of polarization
parallel to the axis and partly in the state of polarization perpen-
dicular  to the axis. The state of oblique polarization may be con-
sidered as the result of some kind of Superposition process applied to
the two states of parallel and perpendicular polarization. This implies
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a certain special  kind of relationship between the various states of
polarization, a relationship similar to that between polarized beams in
classical optics, but which is now to be applied, not to beams, but to
the states of polarization of one particular  Photon.  This relationship
allows any state of polarization to be resolved into, or expressed as a
superposition of, any two mutually perpendicular states of polari-
zation.

When we make the Photon  meet a tourmalme crystal, we are sub-
jecting it to an Observation. We are observing whether it is polarized
parallel or perpendicular to the optic axis. The effect of making this
Observation is to forte the Photon  entirely into the state of parallel
or entirely into the state of perpendicular polarization. It has to
make a sudden jump from being partly in each  of these two states to
being entirely in one or other of them. Which  of the two states it will
jump into cannot  be predicted, but is governed only by probability
laws. If it jumps into the parallel state it gets absorbed and if it
jumps into the perpendicular state it Passes  through the crystal and
appears on the other side preserving this state of polarization.

3. Interference of photons
In this section we shall deal with another example of Superposition.

We shall again take photons, but shall be concerned with  their posi-
tion in space  and their momentum  instead of their polarization. If
we are given a beam of roughly monochromatic light, then we  know
something about the location and momentum  of the associated
photons. We know that each  of them is located somewhere in the
region of space  through which the beam is passing  and has a momen-
turn in the direction of the beam of magnitude given in terms of the
frequency of the beam by Einstein’s photo-electric law-momentum
equals frequency multiplied by a universal constant.  When we have
such information about the location and momentum  of a Photon  we
shall say that it is in a definite tramlat@nal  state.

We shall discuss  the description which quantum  mechanics pro-
vides of the interference of photons. Let us take a definite experi-
ment demonstrating interference. Suppose we have a beam of light
which is passed through some kind of interferomefer, so that it gets
Split  up into two components and the two components are subse-
quently made to interfere. We may, as in the preceding section,  take
an incident beam consisting of only a Single Photon  and inquire what
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will happen to it as it goes through the apparatus. This will present
to us the difficulty of the confliet between the wave and corpuscular
theories  of light in an acute  form.

Corresponding to the description that we had in the case  of the
polarization, we must now describe the Photon  as going partly into
each  of the two components into which the incident beam is Split.
The Photon  is then, as we may say, in a translational state given by the
Superposition of the two translational states associated with  the two
components. We are thus led to a generalization of the term ‘trans-
lational state’ applied to a Photon. For a Photon  to be in a definite
translational state it need not be associated with one Single beam of
light, but may be associated with two or more beams of light which
arc  the components into which one original beam has been Split.? In
the accurate mathematical theory each  translational state is associated
with one of the wave functions of ordinary wave optics, which wave
function  may describe either a Single beam or two or more beams
into which one original beam has been Split. Translational states are
thus superposable in a similar way to wave functions.

Let us consider now what happens when we determine the energy
in one of the components. The result of such a determination must
be either the whole Photon  or nothing at all. Thus the Photon  must
Change sudderily  from being partly in one beam and partly in the
other to being entirely in one of the beams. This sudden Change is
due to the disturbance in the translational state of the Photon  which
the Observation necessarily makes. It is impossible to predict in which
of the two beama the Photon  will be found. Only the probability of
either result tan  be calculated from  the previous diatribution of the
Photon  over the two beams.

One could carry out the energy measurementwithout destroying the
component beam by, for example, reflecting the beam from a movable
mirror and observing the recoil. Our description of the Photon  allows
us to infer that, ufter such an energy measurement, it would not be
possible to bring about any interference effects between the two com-
ponents. So long as the Photon  is partly in one beam and partly in
the other, interference tan occur when the two beams are superpose&
but this possibility disappears when the Photon  is forced entirely into

t The circumstance that the superposition idea  requires  us to generalize our
original meaning of translational states, but that no corresponding  generalization was
needed for the states of Polarkation of the preceding section, is an accidental one
with no underlying theoretical sign&ance.
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one of the beams by an Observation. The other beam then no langer
emers  into  the description of the Photon,  so that  it counts  &S  being
entirely  in the one beam in the ordinary way for any experiment that
may subsequently be performed on it.

On these lines quantum  mechanics is able to effect a reconciliation
of fhe wave  and corpuscular properties of light. The essential Point
is the association of each  of the translational states of a photon  with
one of the wave functions  of ordinary wave optics. The nature of this
association cannot be pictured on a basis of classical mechanics, but
is something entirely new. It would be quite wrong to picture the
Photon  and its associated wave as interacting in the way in which
particles and waves tan  interact in classical mechanics. The associa-
tion tan  be interpreted only statistically, the wave function  giving
us information about the probability of our finding the Photon  in any
particular  place when we make an Observation of where it is.

Some time before the discovery of quantum  mechanics People
realized that the connexion between light waves and photons must
be of a statistical Character. What they did not clearly realize, how-
ever, was that the wave function gives information about the proba-
bility of one Photon  being in a particular  place and not the probable *
number of photons in that place.  The importante of the distinction
tan  be made clear  in the following way. Suppose we have a beam
of light consisting of a large number of photons Split  up into two com-
ponents of equal  intensity. On the assumption that the intensity of
a beam is connected with the probable number of photons in it, we
should have half the total number of photons going into each  com-
ponent. If the two components are now made to interfere, we should
require a Photon in one component to be able to interfere with one in
the other. Sometimes these two photons would have to annihilate one
another and other firnes they would have to produce four photons.
This would contradict the conservation of energy. The new theory,
which connects the wave function with probabilities for one Photon,
gets  over the difficulty by making each  Photon  go partly into each  of
the two components. Esch Photon then interferes only with itself. ’
Interference between two different photons never occurs.

The association of particles with waves discussed above is not ’
restricted  to the case  of light, but is, according to modern theory,
of universal applicability.  All kinds of particles are associated with
waves  in this  way  and conversely all wave motion is associated with
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particles. Thus all particles tan be made to exhibit interference
effects and all wave motion has its energy in the form of quanta. The
reason why these general phenomena are not more obvious is on
account of a law of proportionality betwcen the mass or energy of the
particles and the frequency of the waves, the coefficient being such
that for waves of familiar frequencies the associated quanta are
extremely small, while for particles even as light as electrons  the
associated wave frequency is so high that it is not easy to demonstrate
interference.

4. Superposition and indeterminacy
The reader may possibly feel dissatisfied with the attempt in the

two preceding sections  to fit in the existente of photons with the
classical theory of light. He may argue that a very strange idea has
been introduced-the possibility of a Photon  being partly in each  of
two states of polarization, or partly in each  of two separate beams-
but even with the help of this strange idea no satisfying picture of
the fundamental Single-Photon  processes  has been given. He may say
further  that this strange idea did not provide any information about
experimental results for the experiments discussed, beyond what
could have been obtained from an elementary consideration of
photons being guided in some vague way by waves. What, then, is
the use of the strange idea?

In answer  to the first criticism it may be remarked that the main
Object  of physical science is not the Provision of pictures,  but is the
formulation of laws governing phenomena and the application of
these laws to the discovery of new phenomena. If a picture exists,
so much  the better; but whether a picture exists or not is a matterH .---w- .._
of only secondary-importante._- ,c*- - ,-_-_  _.  -.--- In the case of atomic  phen&za” . _.,  ” ‘““.-“-“_“c
no picture tan  be expected to exist in the usual sense of the word
‘picture’,  by wbich  is meant a model functioning essentially on
classical lines. One may, however, extend the meaning of the word
‘picture’ to include any way of looking  at the fundamental laws  which
makes  their self-consistency  obvious. With this extension, one may
gradually acquire a picture of atomic  phenomena by becoming
familiar with the laws of the quantum  theory.

With regard to the second  criticism, it may be remarked that for
many simple experiments with light, an elementary theory of waves
and photons connected in a vague statistical way would be adequate

i
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to account for the results. In the case of such experiments quantum
mechanics has no further  information to give. In the great majority
of experiments, however, the conditions are too complex for an
elementary theory of this kind to be applicable and some more
elaborate scheme, such as is provided by quantum  mechanics, is then
needed. The method of description that quantum  mechanics gives
in the more complex cases is applicable also to the simple cases and
although it is then not really  necessary for accounting  for the experi-
mental results, its study in these simple cases is perhaps a suitable
introduction to its study in the general case.

There remains an Overall criticism that one may make to the whole
scheme, namely, that in departing  from the determinacy of the
classical theory a great complication is introduced into the descrip-
tion of Nature, which  is a highly undesirable feature. This complica-
tion is undeniable, but it is offset by a great simplification,  provided
by the general principle  of superposition  of states,  which  we shall now
go on to consider. But first  it is necessary to make precise  the impor-
tant concept of a ‘state’  of a general atomic  System.

Let us take any atomic System, composed of particles  or bedies
with specified properties (mass, moment of inertia, etc.) interacting
according to specified laws of forte. There will be various possible
motions of the particles  or bodies consistent  with the laws of forte.
Esch such motion is called a state  of the System. According to
classical ideas one could specify a state by giving numerical  values
to all the coordinates and velocities of the various component Parts
of the System  at some instant of time, the whole motion being then
completely determined. Now the argument of pp. 3 and. 4 Shows  that
we cannot  observe a sma.8 System  with that amount of detail which
classical theory supposes. The limitation in the power of Observation
puts a limitation on the number of data that tan  be assigned to a
state. Thus a state of an atomic  System  must be specitled  by fewer
or more indefinite data than a complete  set of numerical  values
for all the coordinates and velocities at some instant of time. In the
case  when the System  is just a Single Photon,  a state  would be com-
pletely specified by a given state of motion in the sense of $3
together with a given sfate of polarization  in the sense of $!  2.

A state of a System  may be defined  as an undisturbed motion that
is restricted by as many conditions or data as are theoretically
possible without mutual interference or contradiction. In practice
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the conditions could be imposed by a suitable preparation of the
system,  consisting perhaps in passing  it through various kinds of
sorting apparatus, such as slits and polarimeters, the System  being
left undisturbed after the preparation. The word ‘state’ may be
used to mean either the state at one particular time (after the
preparation), or  the state throughout the whole of time after the
preparation. To distinguish these two meanings, the latter will be
called a ‘state of motion’ when there is liable to be ambiguity.

The general principle of superposition of quantum  mechanics
applies to the states, with either of the above meanings, of any one
dynamical System. It requires  us to assume that between these
states there exist peculiar relationships such that whenever the
System  is definitely  in one state we tan consider it as being partly
in each  of two or more other states. The original state must be
regarded as the result of a kind of superposition  of the two or more
new states, in a way that cannot  be conceived on classical ideas. Any
state may be considered as the result of a superposition of two or
more other states, and indeed in an infinite number of ways. Con-
versely any two or  more states may be superposed to give a new
state. The procedure of expressing a state as the result of super-
Position of a number of other states is a mathematical procedure
that is always permissible, independent of any reference to physical
conditions, like the procedure of resolving a wave into Fourier com-
ponents. Whether it is useful in any particular case,  though, depends
on the special  physical conditions of the Problem  under  consideration.

In the two preceding sections  examples were given of the super-
Position  principle applied to a System  consisting of a Single Photon.
0 2 dealt with states differing only with regard to the polarization and
5 3 with states differing only with regard to the motion of the Photon
as a whole.

The nature of the relationships which  the Superposition principle
requires to exist between the states of any System  is of a kind that
cannot be explained in terms of familiar physical concepts. One
cannot in the classical sense picture a System  being partly in each  of
two states and see the equivalence of this to the System  being com-
pletely in some other state. There is an entirely new idea involved,
to which  one must get accustomed and in terms of which  one must
proceed to buil’d  up an exact mathematical theory, without having
any detailed classical picture.
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When a state is formed by the Superposition of two other states,
it will have properties that are in some vague way intermediate
between those of the two original states and that approach more or
less closely to those of either of them according to the greater  or less
‘weight’ attached to this state in the Superposition process. The new
state is completely defined by the two original states when their
relative weights in the Superposition process are known, together
with a certain Phase  differente, the exact meaning of weights and
phases being provided in the general case  by the mathematical theory.
In the case  of the polarization of a Photon  their meaning is that pro-
vided by classical optics, so that, for example, when two perpendicu-
larly plane polarized states are superposed with equal weights, the
ne’w state may be circularly polarized in either direction,  or linearly
polarized at an angle & 7~, or else elliptically polarized, according to
the Phase  differente.

The non-classical nature of the Superposition process is brought
out clearly if we consider the Superposition of two states, A and B,
such that there exists an Observation which,  when made on the
System  in state A, is certain to lead to one particular  result, a say, and
when made on the System  in state B is certain to lead to some different
result, b say. What will be the result of the Observation when made
on the System  in the superposed state ? The answer  is that the result
will be sometimes a and sometimes b, according to a probability law
depending on the relative weights of A and B in the Superposition
process. It will never be different from both a and b. The inter-
mediate Character of the state formed by superposition thus  expresses
itself  through the probability of a particulur  res&  for an observution
being interkdiate  between the corresponding probabilities  for the original
stutes,j-  not through  the result  itself  being intermediate  between the
corresponding  results for the original states.

In this way we see that such a drastic  departure from ordinary
ideas as the assumption of Superposition relationships between the
states is possible only on account of the recognition of the importarme
of the disturbance accompanying an Observation and of the conse-
quent indeterminacy in the result of the Observation. When an
Observation is made on any atomic  System  that is in a given state,

t The probability of a particulrtr  result  for the state formed by superposition is not
slways  intermediate between those for the original states in the general  case  when
those for the original states are not Zero  OP unity, so there arc  restrictions  on the
‘intermediateness ’ of  a state formed by Superposition.
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in general the result will not be determinate, i.e., if the experiment
is repeated several times under  identical conditions several different
results may be obtained. It is a law of nature, though, that if the
experiment is repeated a large number of firnes, each  particular  result
will be obtained in a definite  fraction of the total number of firnes, so
that there is a definite probability  of its being obtained. This proba-
bility is what the theory sets out to calculate. Only in special  cases
when the probability for some result is unity is the result of the
experiment determinate.

The assumption of Superposition relationships between the states
leads to a mathematical theory in which the equations that define
a state are linear in the unknowns. In consequence of this, People
have tried to establish analogies with Systems in classical mechanics,
such as vibrating strings or membranes, which are governed by linear
equations and for which, therefore, a superposition principle holds.
Such analogies have led to the name ‘Wave Mechanics’ being some-
times given to quantum  mechanics. It is important to remember,
however, that the superposition that occurs in quuntum mechanics is
of an. essentially different  nuture from any occurring in the classical
theory, as is shown by the fact that the quantum  Superposition prin-
ciple demands indeterminacy in the results of observations in Order
to be capable  of a sensible physical interpretation. The analogies are
thus liable  to be misleading.

5. Mathematical formulation of the principle
A profound Change has taken place during  ‘the present century in

the opinions physicists have held on the mathematical foundations
of their subject.  Previously they supposed that the principles of
Newtonian mechanics would provide the basis for the description
of the whole of physical phenomena and that all the theoretical
physicist had to do was suitably to develop and apply these prin-
ciples. With the recognition that there is no logical reason why
Newtonian and other classical principles should be valid outside the
domains  in which they have been experimentally verified has come
the realization  that departures Fom these principles are indeed
necessary. Such departures find their expression through the intro-
duction of new mathematical formalisms, new schemes  of axioms
and rules of manipulation, into the methods of theoretical physics.

Quantum mechanics provides a good example of the new ideas. It
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requires the &ates  of a dynamical System  and the dynamical variables
to be interconnected in quite strange  ways that are unintelligible
from the classical Standpoint. The states and dynamical variables
have to be represented by mathematical quantities of different
natures  from those ordinarily used in physics.  The new scheme
becomes a precise  physical theory when all the axioms and rules  of
manipulation governing the mathematical quantities arc  spectied
and when in addition certain laws are laid down connecting physical
facts  with the mathematical formalism, so that from any given
physical conditions equations between the mathematical quantities
may be inferred and vice versa. In an application of the theory one
would be given certain physical information, which  one would pro-
ceed to express by equations between the mathematical quantities.
One would then deduce new equations with the help of the axioms
and rules of manipulation and would conclude by interpreting these
new equations as physical conditions. The justification  for the whole
scheme depends, apart from internal consistency, on the agreement
of the final results with experiment.

We shall begin to set up the scheme by dealing with the mathe-
matical relations between the states of a dynamical System  at one
instant of time, which  relations will come  from the mathematical
formulation of the principle of Superposition. The Superposition pro-
cess is a kind of additive process and implies that states tan in some
way be added to give new states. The states must therefore be con-
nected with mathematical quantities of a kind which  tan  be added
together to give other quantities of the same kind. The most obvious
of such quantities are vectors. Ordinary vectors,  existing in a space
of a finite number of dimensions,  are not sufficiently general for
most of the dynamical Systems  in quantum  mechanics. We have to
make a generalization to vectors in a space  of an infinite number of
dimensions, and the mathematical treatment becomes complicated
by questions of convergence. For the present, however, we shall deal
merely with some general properties of the vectors,  properties which
tan  be deduced on the basis of a simple scheme of axioms, and
questions of convergence and related topics will not be gone into
until the need arises.

It is desirable to have a speeist1  name for describing the vectors
which  are connected with the states of a System  in quantum  mecha-
nies,  whether they are in a space  of a finite or an inf?nite  number of
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dimensions. We shall cal1  them ket vectors, or simply kets, and denote
a general one of them by a special  Symbol  j>.  If we want to specify
a particular one of them by a label, A say, we insert it in the middle,
thus IA).  The suitability of this notation will become clear  as the
scheme is developed.

Ket vectors may be multiplied by complex numbers and may be
added together to give other ket vectors, eg.  from two ket vectors
IA) and IB) we tan form

Cl IA)+%  IW = Im,
say, where c1 and cs are any two complex numbers. We may also
perform more general linear processes  with them, such as adding an
infinite sequence of them, and if we have a ket vector IX),  depending
on and labelled by a Parameter x which tan take on all values in a
certain range, we may integrate it with respect  to x, to get another
ket vector

s IX>  dx 1 IQ>
say. A ket vector which is expressible linearly in terms of certain
others is said to be dependent on them. A set of ket vectors are called
independent  if no one of them is expressible linearly in terms of the
others.

We now assume that euch  state of a dynamical system at a particular
time cwresponds  to a ket vector, the correspondence being such that  i f  a
state results from  the superposition of certain other states, its correspond-
ing ket vector is expressible linearly in terms of the corresponding ket
vectors of the other states, and conversely. Thus the state R results from
a Superposition of the states A and B when the corresponding ket
vectors are connected by (1).

The above assumption leads to certain properties of the super-
Position process, properties which are in fact necessary for the word
‘superposition’ to be appropriate. When two or more states are
superposed, the Order  in which they occur in the Superposition
process is unimportant,  so the Superposition process is symmetrical
between the states that are superposed. Again, we see from equation
(1) that (excluding  the case when the coefficient c1 or c, is Zero)  if
the state R tan  be formed by Superposition of the states A and B,
then the state A tan be formed by Superposition of B and R, and B
tan be formed by Superposition of A and R. The Superposition
relationship is symmetrical between all three states A, 23, and R.
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A state which results from the Superposition of certain other
states will be said to be dependent on those states. More generally,
a state will be said to be dependent on any set of states, finite or
infinite in number, if its corresponding ket vector is dependent on
the corresponding ket vectors of the set of states. A set of states
will be called independent if no one of them is dependent on the
others.

To proceed with the mathematical formulation of the superposition
principle we must introduce a further  assumption, namely the assump-
tion that by superposing a state with itself we cannot  form any new
state, but only the original state over again. If the original state
corresponds to the ket vector IA),  when it is superposed with itself
the resulting state will correspond to

clI4+%  14 = (c1+cJA),

c

where c1 and ca  are numbers. Now we may have cl+cz  = 0, in which
case  the result of the Superposition process would be nothing at all,
the two components having cancelled each  other by an interference
effect. Our new assumption requires that, apart from this special
case,  the resulting state must be the same as the original one, so that
(c,+c,)  IA} must correspond to the same state that IA>  does. Now
c1+c2  is an arbitrary complex number and hence  we tan  conclude
that if the  ket vector corresponding to  a state is multi@ied  by any
complex  number, not xero,  the resulting bet vector will correspond to the
same Stute.  Thus a state is specified by the direction  of a ket vector
and any length one may assign to the ket vector is irrelevant. All
the states of the dynamical System  are in one-one correspondence
with  all the possible directions  for a ket vector, no distinction  being
made between the directions  of the ket vectors IA) and - IA).

The assumption just made Shows up very clearly the fundamental
differente between the Superposition of the quantum  theory and any
kind of classical superposition. In the case  of a classical System  for
which a superposition principle holds, for instance a vibrating mem-
brane, when one superposes a state with itself the result is a difSerent
state, with a different magnitude of the oscillations. There is no
physical characteristic of a quantum  state corresponding to the
magnitude  of the classical oscillations, as distinct  from their quality,
described by the ratios of the amplitudes at different Points  of
the membrane.  Again, while there exists a classical state with zero

3595.57 a
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amplitude of oscillation everywhere, namely the state of rest, there
does not exist any corresponding state for a quantum  System, the
Zero ket vector corresponding to no state at all.

Given two states corresponding to the ket vectors IA) and IB),
the general state formed by superposing them corresponds to a ket
vector IR> which is determined by two complex numbers, namely
the coefficients cr  and c2 of equation (1). If these two coefficients are
multiplied by the same factor (itself a complex number), the ket
veotor IR) will get multiplied by this factor and the corresponding
state will be unaltered. Thus only the ratio of the two coefficients
is effective in determining the state R. Hence this state is deter-
mined by one complex number, or by two real Parameters. Thus
from two given states, a twofold infinity of states may be obtained
by superposition.

This resrilt  is confirmed by the examples discussed in $9  2 and 3.
In the example of $2 there are just two independent states of polari-
zation for a Photon,  which may be taken to be the states of plane
polarization parallel and perpendicular  to some fixed direction,  and
from the Superposition of these two a twofold infinity of states of
polarization tan be obtained, namely all the states of elliptic polari-
zation, the general one of which requires two Parameters to describe
it. Again, in the example of $ 3, from the Superposition of two given
states of motion for a Photon  a twofold infinity of states of motion
may be obtained, the general one of which is described by two
Parameters, which may be taken to be the ratio of the amplitudes
of the two wave functions  that are added together and their Phase
relationship.  This confirmation  Shows  the need for allowing complex
coeflicients  in equation (1). If these coefficients were restricted to be
real, then, since only their  ratio is of importante for determining the
direction  of the resultant ket vector 1 R> when IA) and IB) are
given, there would be only a simple in.Cnity of states obtainable from
the Superposition.

6. Bra and ket vectors
Whenever we have a set of vectors in any mathematical theory,

we tan  always set up a second set of vectors, which mathematicians
call  the dual vectors. The procedure will be described for the case
when the original vectors are our ket vectors.

Suppose we have a number + which is a function  of a ket vector

t*.
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IA), i.e. to each ket vector IA) there corresponds one number 4,
and suppose further  that the function is a linear one, which  means
that the number corresponding to IA)+ IA’) is the sum of the
numbers corresponding to IA) and to IA’),  and the number corre-
sponding to c/A)  is c times the number corresponding to IA),  c
being any numerical  factor. Then the number + corresponding to
any IA) may be looked upon as the scalar product of that IA) with
some new vector, there being one of these new vectors for each  linear
function of the ket vectors IA). The justification  for this way of
looking at + is that, as will be seen later  (see equations (5) and (6)),
the new vectors may be added together and may be multiplied by
numbers to give other vectors of the same kind. The new vectors
are, of course, defined only to the extent that their scalar products
with the original ket vectors are given numbers, but this is suffi-
cient  for one to be able to build up a mathematical theory about
them.

We shall cal1 the new vectors bra vectors, or simply bras,  and denote
a general one of them by the Symbol  ( 1,  the mirror image of the
Symbol  for a ket vector. If we want to specify a particular  one of
them by a label, B say, we write it in the middle, thus <B 1.  The
scalar product of a bra vector (BI and a ket vector IA) will be
written (BIA), i.e. as a juxtaposition of the Symbols for the bra
and ket vectors, that for the bra vector being on the left, and the
two vertical  lines being contracted to one for brevity.

One may look upon the Symbols ( and > as a distinctive  kind of
brackets.  A scalar product (BIA) now appears as a complete  bracket
expression and a bra vector (BI or  a ket vector IA) as an incomplete
bracket  expression. We have the rules that any complete bracket
expression denotes a number and any incomplete  bracket  expression
denotes a vector, of the bra or  ket kind according to whether it contuins
the Jirst  or  second  part sf thti brackets.

The condition  that the scalar product of (BI and IA) is a linear
function of IA) may be expressed symbolically by

<BI(W+  IA’)) = <JWO+<BIO (2)
<BI{+))  = c<BW, (3)

c being any number.
A bra vector is considered to be completely defined when its scalar

product with every ket vector is given, so that if a bra vector has its
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scalar product with every ket vector vanishing, the bra vector itself
must be considered as vanishing. In Symbols, if

<PIA> = 0, all IA>,
then (PI = 0. 1

(4)

The sum of two bra vectors (B 1 and (B’ { is defined by the condition
that its scalar product with any ket vector IA) is the sum of the
scalar products of (BI and (B’I  with IA),

@1+(8’l)lA>  = <BIA>+<B’IA>, (5)
and the product of a bra vector (B 1 and a number c is defined by the
condition that its scalar product with any ket vector IA) is c firnes
the scalar product of (BI with IA),

(cwI4 = c(BIA). (6)

Equations (2) and (5) sh,ow  that products of bra and ket vectors
satisfy the distributive axiom of multiplication, and equations (3)
and (6) show that multiplication by numerical  factors  satisfies the
usual algebraic axioms.

The bra vectors, as they have been here introduced, are quite a
different kind of vector from  the kets, and so far there is no connexion
between them except for the existente of a scalar product of a bra
and a ket. We now make the assumption that Tiere is a one-one
correspondence between the bras and the  kets, such that the bra corre-
sponding  to IA) + IA’) is the suna  of the bras corresponding to 1 A) and
to IA’), md  the bra corresponding to clA> is c’ times the bra corre-
spon&ng-  to IA),  c’  being the conjugate cornplex  number to c. We shall
use the same label to specify a ket and the corresponding bra. Thus
the bra corresponding to IA) will be written (A  1.

The relationship  between a ket vector and the corresponding bra
makes it reasonable to call one of them the conjugate imaginary of
the other. Our bra and ket vectors are complex quantities, since  they
tan be multiplied by complex numbers and are then of the same
nature as before, but they are complex quantities of a special  kind
which  cannot  be Split  up into real and pure imaginary Parts.  The
usual method of getting the real part of a complex quantity, by
taking half the sum of the quantity itself and its conjugate, cannot
be applied since  a bra and a ket vector are of d.ifIerent  natures  and
cannot  be added together. To call  attention to this distinction,  we
shall use the words ‘conjugate complex’ to refer to numbers and



BRA AND KET VECTQRS

other complex quantities which tan be spht  up into real and pure
imaginary Parts,  and the words ‘conjugate imaginary’ for bra and
ket vectors, which cannot.  With the former  kind of quantity, we
shall use the notation  of putting a bar over one of them to get the
conjugate complex one. I

On account of the one-one correspondence between bra vectors and
ket vectors, any state of our dynamical system at a particular  time may
be spec@ed  by the direction of a bra uector  just us weil  as by the direction
of a ket vector. In fact the whole theory will be symmetrical in its
essentials between bras and kets.

Given any two ket vectors IA) and IB),  we tan construct from
them a number (BIA) by taking the scalar product of the first with
the conjugate imaginary of the second. This number depends linearly
on IA) and antilinearly  on IB),  the antilinear dependence meaning
that the number formed from IB)+ IB’) is the sum of the numbers
formed from 1 B)  and from 1 B’), and the number formed from  c 1 B)
is c’ times the number formed from IB).  There is a second way in
which we tan  construct a number which depends linearly on IA> and
antilinearly on IB>, namely by forming the scalar product of IB)
with the conjugate imaginary of IA) and taking the conjugate com-
plex of this scalar product. We assume thut  these two.numbers  are
always equul, i.e.

Gwo  = <4w (7)
Putting IB) = IA> here, we find that the number @IA>  must be
real. We make the further  assumption

<44  > 0, (8)
except when IA) = 0.

In ordinary  space,  from  any two vectors one tan  construct a
number-their  scalar product-which  is a real number and is sym-
metrical between them. In the space  of bra vectors or  the space  of
ket vectors, from any two vectors one tan  again construct a number
-the scalar product of one with the conjugate imaginary of the
other-but this number is complex and goes over into the conjugate
complex number when the two vectors are interchanged. There is
thus a bind of perpendicularity in these spaces,  which is a generaliza-
tion of the perpendicularity in ordinary space.  We shall call  a bra
and a ket vector orthogonal if their scalar product is Zero, and two
bras or tw.o kets will be called orthogonal if the scalar product of one
with the conjugate imaginary of the other is Zero.  E’urther,  we shall
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say  that two states of our dynamical System  are orthogonal if the
vectors  corresponding to these states are orthogonal.

The  Zength  of a bra vector (A 1 or of the conjugate imaginary ket
vector JA) is defined as the Square root of the positive number
(A  IA).  When we are given a state and wish to set up a bra or ket
vector to correspond to it, only the direction of the vector is given
and the vector itself is undetermined to the extent of an arbitrary
numerical factor. It is often convenient to choose this numerical
factor so that the vector is of length unity. This procedure is called
normalization  and the vector so Chosen  is said to be normlixed.  The
vector is not completely determined even then, since  one tan still
multiply it by any number of modulus unity, i.e. any number eiy
where y is real, without changing  its length. We shall call  such a
number a phase  factor.

The foregoing assumptions give the complete scheme of relations
befween the states of a dynamical System  at a particular  time. The
relations appear in mathematical form, but they imply physical
conditions, which  will lead to results expressible in terms of observa-
tions when the theory is developed  further. For instance, if two states
are orthogonal, it means at present simply a certain equation in our
formalism, but this equation implies a definite physical relationship
between the states, which  further  developments of the theory will
enable  us to interpret in terms of observational results (see the
bottom of p. 35).
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7. Linear Operators
IN the preceding section  we considered a number which is a linear
function of a ket vector, and this led to the concept of a bra vector.
We shall now consider a ket vector which is a linear function of a
ket vector, and this will lead to the concept of a linear Operator.

Suppose we have a ket IE‘) which is a function of a ket IA),  i.e.
to each  ket IA) there corresponds one ket 1 F), and suppose further
that the function is a linear one, which means that the IF) corre-
sponding to IA) + IA’) is the sum of the 1 F)‘s  corresponding to IA)
and to IA’), and the I-8’)  corresponding to clA>  is c times the 1 F)
corresponding to IA), c being any numerical  factor.  Under  these
conditions, we may 10015 upon the passage from  IA) to 1 F) as the
application of a linear Operator to IA). Introducing the Symbol  01
for the linear Operator, we may write

in which the result of cx  operafing on IA) is written like a product
of ac.  with IA).  We make the rule that in such products the ket wector
must always be put  on the right of the linear operatm.  The above
conditions of linearity may now be expressed by the equations

4A>+ IA’>)  = +>+w>,
a{clA)) = c+4). 1 (1)

A linear Operator is considered to be completely defined when the
result of its application to every ket vector is given. Thus a linear
Operator is to be considered zero if the result of its application to every
ket vanishes, and two linear Operators are to be considered equal if
they produce the same result when applied to every ket.

Linear Operators tan  be added together, the sum of two linear
Operators being defined to be that linear Operator which, operating
on any ket, produces the sum of what the two linear Operators
separately would produce.  Thus CY+/~  is defined by

(~+Pw>  = 4A>+mo (2)
for any IA). Equation (2) and the first of equations (1) show that
products of linear Operators with ket vectors satisfy the distributive
axiom of multiplication.
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Linear Operators tan  also be multiplied together, the product of
two linear Operators being defined as that linear Operator, the appli-
cation  of which to any ket produces fhe same result as the application
of the two linear Operators successively. Thus the product a/3  is
defined as the linear Operator which, operafing on any ket IA),
changes  it into that ket which one would get by operating first on
IA>  with /3,  and then on the result of the first Operation with 01. In
Symbols

This definition appears as the associative axiom of multiplication for
the triple product of 01, fl, and IA), and allows us to write this triple
product as aj3jA) without brackets.  However, this triple product is
in general not the same as what we should get if we operated on IA)
first with Q:  and then with ß, i.e. in general @IA) differs from /3aIA),
so that in general 0#3 must differ from  /Ia. The commutative  axiom of
multiplication does not hZd  for linear Operators. It may happen as a
special case that two linear Operators f and q are such that eq and
76 are equal. In this case we say that 5 commutes with 7,  or that 6
and r] commute.

By repeated applications of the above processes  of adding  and
multiplying linear Operators, one tan  form sums and products of
more than two of them, and one tan proceed to build up an algebra
with  them. In this algebra the commutative axiom of multiplication
does not hold, and also the product of two linear Operators may
vanish without either factor vanishing. But all the other axioms of
ordinary algebra, including the associative and distributive axioms
of multiplication, are valid, as may easily be verified.

If we take a number li:  and multiply it into ket vectors,  it appears
as a linear Operator operating on ket vectors,  the conditions (1) being
fulfrlled  with E substituted for CX.  A number is thus a special case  of
a linear Operator. It has the property that it commutes with all linear
Operators and this property distinguishes it from a general linear
Operator.

So far we have considered linear Operators operating only on ket
vectors. We tan  give a meaning to their operating also on bra vectors,
in the following way. Take the scalar  product of any bra (BI with
the ket a IA).  This scalar  product is a number which depends
linearly on IA) and therefore, from  the definition of bras, it may be
considered as the scalar  product of IA) with some bra. The bra thus
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defined depends linearly on {B 1,  so we may look upon it as the result of
some linear operator  applied to (B 1. This linear Operator is uniquely
determined by the original linear Operator cx  and may  reasonably be
called the Same linear Operator operating on a bra. In this way our
linear Operators are made capable  of operating on bra vectors.

A suitable notation to use for the resulting bra  when u: operates on
the bra (BI  is (Bla, as in this notation the equstion which defines
(Bleu  is

(3) +
for any JA>, which simply expresses the associative axiom of multi-
plication for the triple product of (BI,  CL, and IA). We therefore
make the general rule that in a product of a bra and a linear Operator,
the bra must always be put on the left. We tan  now write  the friple
product of (BI, CII,  and IA> simply as (B ICX  IA>  without brsckets. It
may easily be verified that the distributive axiom of multiplication
holds for products of bras and linear operetors just as weil  as for
products of linear Operators and kets.

There is one further  kind of product which has a meaning in our
scheme, namely the product of a ket vector  and a bra vector  with
the ket on the left, such as lA)(B 1.  To examine this product, let us
multiply it into an arbitrary  ket 1 P), putting the ket on the right,
and assume the associative axiom of multiplication. The product is
then IA)(B 1 P), which is another ket, namely (A)  multiplied by the
number (BI P), and this ket depends linearly on the ket 1 P). Thus
IA){ BI appears as a linear Operator that tan  operate on kets. It
tan also operate on bras, its product with  a bra (& 1 on fhe left being
(&JA>(BJ,  which is the number (QIA)  times the bra (BJ. The
product IA}{ B 1 is to be sharply distinguished from the product
(BIA}  of the same factors in the reverse Order,  the latter product
being, of course, a number.

We now have a complete algebraic  scheme  involving three kinds
of quantities, bra vectors, ket vectors, and linear Operators. They tan
be multiplied together in the various ways  discussed above, ad the
associative and distributive axioms of multiplication always hold,
but the commutative axiom of multiplication does not hold. In this
general scheme we still have the rules  of notation of the preceding
section,  that any complete bracket  expression, containing ( on the
left and > on the right, denotes a number, while any incomplete
bracket  expression, containing  only ( or  >, denotes a vector.
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With regard to the physical significance of the scheme, we have
already assumed that the bra vectors and ket vectors, or rather the
directions  of these vectors, correspond to the states of a dynamical
System  at a particular  time. We now make the further  assumption
that the linear Operators correspond  to the dynamical variables at that
time. By dynamical variables are meant quantities such as the
coordinates and the components of velocity, momentum  and angular
momentum  of particles,  and functions of these quantities-in fact
the variables in terms of which classical mechanics is built up. The
new assumption requires that these quantities shall occur also in
quantum  mechanics, but with the striking differente that they are
now subject  to an algebra in which the  commutative axiom of multiplica-
tion does not hold.

This different algebra for the dynamical variables is one of the
most important ways in which quantum  mechanics differs from
classical mechanics. We shall see later on that, in spite of this funda-
mental differente,  the dynamical variables of quantum  mechanics
still have many properties in common with their classical counter-
Parts  and it will be possible to build up a theory of them closely
analogous to the classical theory and forming a beautiful generaliza-
tion of it.

It is convenient to use the same letter to denote a dynamical
variable and the corresponding linear Operator. In fact, we may con-
sider a dynamical variable and the corresponding linear Operator to
be both the same thing, without getting into confusion.

8. Conjugate relations
Our linear Operators are complex quantities, since  one tan multiply

them by complex numbers and get other quantities of the Same nature.
Hence  they must correspond in general to complex dynamical vari-
ables, i.e. to complex functions of the coordinates, velocities, etc. We
need some further  development of the theory to see what kind of
linear Operator corresponds to a real dynamical variable.

Consider the ket which is the conjugate imaginary of (P Ia. This
ket depends antilinearly on (P 1 and thus depends linearly on 1 P).
It may therefore be considered as the result of some linear Operator
operafing on [ P). This linear Operator is called the adjoint  of 01  and
we shall denote it by 2.  With this notation, the conjugate imaginary
of (P~cx  is GIP).
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In formula (7) of Chapter 1 put (P  Ia for (A  1 and its conjugate
imaginary 0i1 P) for IA). The result is

(BIGIP) = {PlalB). (4)
This is a general formula holding for any ket vectors IB),  1.Q  and
any linear Operator c11,  and it expresses one of the most frequently
used properties of the adjoint.

Putting & for a in (4), we get

(BpqP) = <PIo;IB)  = (BlaIP),

by using (4) again with ]P>  and 1 B) interchanged. This holds for
any ket IP),  so we tan  infer from (4)  of Chapter 1,

(SIE = (Bla,

and since  this holds for any bra vector (B 1,  we tan infer

Thus the adjoint  of the adjoint  of a linear Operator is the original linear
Operator. This property of the adjoint makes it like the conjugate
complex of a number, and it is easily verified that in the special  case
when the linear Operator is a number, the adjoint linear Operator is
the conjugate complex number. Thus it is reasonable to assume that
the adjoint  of a linear Operator corre.spor&.  to the conjugate complex of
a dynamical variable. With this physical significance for the adjoint
of a linear Operator, we may call  the adjoint alternatively the con-
jugate complex linear Operator, which  conforms with our notation 6.

A linear Operator may equal its adjoint, and is then called self-
adjoint.  It corresponds to a real dynamical variable, so it may be
called alternatively a real linear Operator. Any linear Operator may
be Split  up into a. real part and a pure imaginary part. For this
reason the words ‘conjugate complex’ are applicable to linear
Operators and not the words ‘conjugate imaginary’.

The conjugate complex of the sum of two linear Operators is
obviously the sum of their conjugate complexes. To get the conjugate
complex of the product of two linear Operators (II and J3, we apply
formüla  (7) of Chapter 1 with

so that

The result is

<Al = <Pl% @I  = wB9
IN = w>, IB = PIQ>.
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from (4). Since  this holds for any IP) and (& 1,  we tan infer that

P ii = q. (5)
Thus the conjugate complex of the product of two linear Operators equals
the product of the conjugate complexes of the factors in the reverse Order.

As simple examples of this result, it should be noted that, if 5 and
are real, in general CJq is not real. This is an important differente

Lorn  classical mechanics. However, &I  + $ is real, and so is ;( & - qc).
Only  when 6 and q commute  is (17 itself also real. Further,  if 8 is real,
then so is t2  and, more generally, tn  with n any positive integer.

We may get the conjugate complex of the product of three linear
Operators by successive applications of the rule (5) for the conjugate
comnlex  of the nroduct of two of them. We haveL I

& = a@y)  = fijgk = j$ ä, (6)
so the conjugate complex of the product of three linear Operators
equals the product of the conjugate complexes of the factors in the
reverse Order. The rule mey easily be extended to the product of any
number of linear Operators.

In the preceding section  we saw that the product (A)(B 1 is a linear
Operator. We may get its conjugate complex by referring directly to
the definition  of the adjoint.  Multiplying @l)(BI  into a general bra
(P 1 we get (P IA)(B 1,  whose conjugate imaginary ket is

w4Im  = Gwwo  = Pww).
Hence I4W  = Im4 (7)

We now have several rules concerning coniugate complexes and
conjugate imaginaries of products,  namely equation (7) of Chapter 1,
equations (4), (5),  (6),  (7) of this chapter,  and the rule that the
conjugate imaginary of (P Ia is ai 1 P). These rules tan all be summed
up in a Single comprehensive rule, the conjugate complex or  conjugate
imaginary  of any product of bra vectors,  Eet vectors,  and linear operdors
is obtained by taking the conjugate complex or  conjugate imaginary of
each factor and reversing the Order  of all the factors. The rule is easily
verified to hold quite generally, also for the cases  not explicitly given
above.

THEOREM.  If ( is a real linear Operator and
lm/P)  =  0

for  a particulur  ket 1 P>, m bei-g a positive integer, then

(IP) = 0.

(8)
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To prove the theorem, take first the case when m = 2. Equation
(8) then gives

(Plf21P)  = 0,
showing that the ket [ 1 P) multiplied by the conjugate imaginary bra
(P]tj  is Zero.  From the assumption (8) of Chapter 1 with 41 P>  for IA),
we see that 51 P) must be Zero. Thus the theorem is proved for m = 2.

Now take m > 2 and put

cm-21p)  = IQ>.
Equation (8) now gives f21&) = 0.
Applying the theorem for m = 2, we get

w> = 0
or pyP)  = 0. (9)
By repeating the process by which equation (9) is obtained fiom
(8), we obtain successively

p-2jP)  = 0 , pyP)  = 0 , . . . . CpjP)  = 0, W) = 0,
and so the theorem is proved generally.

9. Eigenvalues and eigenvectors
We must make a further  development of the theory of linear

operators, consisting in studying the equation

ajP) = alp}, (10)
where 01  is a linear Operator and a is a number. This equation usually
presents itself in the form that C Y .  is a known linear Operator and the
number a and the ket IP) are unknowns, which we have to try to
choose  so as to satisfy (lO), ignoring the trivial Solution 1 P) = 0.

Equation (10) means that the linear Operator cx  applied to the ket
1 P) just multiplies this ket by a numerical  factor  without changing
its direction,  or else multiplies it by the factor Zero,  so that it ceases
to have a direction. This same cx  applied to other kets will, of course,
in general Change both their lengths and their directions.  It should
be noticed that only the direction  of 1 P) is of importante in equation
(10). If one multiplies 1 P) by any number not Zero,  it will not aff ect
the question of whether (10) is satisfied or not.

Together with equation (lO), we should consider also the conjugate
imaginary form of equation

(Qb = b<Ql, (11)
where b is a number. Here the unknowns are the number b and the



3 0 DYNAMlCAL  VARIABLES AND OBSERVABLES 09

non-Zero  bra (& 1.  Equations (10) and (11) are of such fundamental
importante in the theory that it is desirable to have some special
words to describe the relationships between the quantities involved.
If (10) is satisfied, we shall call  u an eigenvaluet  of the linear Operator
a,  or of the corresponding dynamical variable, and we shall cal1  IP)
an eigenket of the linear Operator or dynamical variable. Further,  we
shall say that the eigenket [P)  belongs  to the eigenvalue u. Similarly,
if (11) is satisfied, we shall call  b an eigenvalue of As.  and (& 1 an
eigenbra belonging to this eigenvalue. The words eigenvalue, eigen-
ket, eigenbra have a meaning, of course, o%?y  with reference  to a linear
Operator or dynamical variable.

Using this terminology, we tan  assert that, if an eigenket of cx  is
multiplied by any number not Zero,  the resulting ket is also an
eigenket and belongs to the Same eigenvalue as the original one.
It is possible to have two or more independent eigenkets of a linear
Operator belonging to the Same eigenvalue of that linear Operator,
e.g.  equation (10) may have several solutions, /Pl),  /Pd),  jP3),...  say,
all holding for the same value of a, with the various eigenkets [Pl),
IPQ,  IP3),... independent. In this case  it is evident that any linear
combination of the eigenkets is another eigenket belonging to the
same eigenvalue of the linear Operator, e.g.

c,l-w+c,  IW+c,  IP3)+...
is another solution of (lO),  where cl,  c2, c~,...  are any numbers.

In the special case  when the linear Operator 01  of equations (10) and
(11) is a number, Ic say,  it is obvious that any ket IP) and bra (& 1
will satisfy these equations provided a and b equal i?. Thus a number
considered as a linear Operator has just one eigenvalue, and any ket
is an eigenket and any bra is an eigenbra, belonging to this eigenvalue.

The theory of eigenvalues and eigenvectors  of a linear Operator CY
which  is not real is not of much  use for quantum  mechanics. We
shall therefore tonfine ourselves to real linear Operators for the further
development of the theory. Putting for a the real linear Operator f,
we have instead of equations (10) and (11)

w-9 = 4Ph (12)
<GM = WL (13)

t The word ‘proper ’ is sometimes used  instead of ‘eigen ‘, but this is not satisfactory
as the words ‘proper’ and ‘improper’  are often used with other meanings. For example,
in $0  15 and 46 the words ‘improper function’  and ‘proper-energy’  are used.
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Three important results tan  now be readily deduced.
(i) The eigenvalues are all real numbers. To prove that a satisfying

(12) is real, we multiply (12) by the bra (P 1 on the left,  obtaining

Now from equation (4) with (B 1 replaced by (P / and cx  replaced by
the real linear Operator e,  we see that the number (P 16 J P> must be
real, and from (8) of $6, (P  1 P) must be real and not Zero. Hence  a
is real. Similarly, by multiplying (13) by IQ>  on the right, we  tan
prove that b is real.

Suppose we have a Solution of (12) and we form the conjugate
imaginary equstion, which will read

in view of the reality of 5 and a. This conjugate imaginary equation
now provides a Solution of (13),  with (& 1 = (PJ  and b = a. Thus
we tan infer

(ii) The eigenvalues associated with eigenkets  are the same  as the
eigenvalues associated with eigenbras.

(iii) The conjugate imaginary of any eigenket is an eigenbra belonging
to the same eigenvalue, and  conversely. This last result makes it reason-
able to cal1  the state corresponding to any eigenket or to the conjugate
imaginary eigenbra an eigenstate  of the real dynamical variable f.

Eigenvalues and eigenvectors  of vaious  real dynamical variables
are used very extensively in quantum  mechanics, so it is desirable
to have some systematic  notation for labelling them. The following
is suitable for most purposes. If E is a real dynamical variable, we
call  its eigenvalues [‘,  e”, e, etc. Thus we have a letter by itself
denoting a real  dymmid  variable or a real linear  Operator, and the
Same letter with primes or  an index attached denoting a number,
namely an eigenvalue of what the letter by itself denotes. An eigen-
vector may now be labelled by the eigenvalue to which  it belongs.
Thus lt’)  denotes an eigenket belonging to the eigenvalue 6’ of the
dynamical variable [. If in a piece of work we deal with more than
one eigenket belonging to the same eigenvalue of a dynamical variable,
we may distinguish them one fiom bnother  by means of a further
label, or possibly of more than one further  labels. Thus, if we are
dealing with two eigenkets belonging to the same eigenvalue of ff,
we may cal1  them /E’l)  and If’2).
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THEOREM. Two eigenvectors of a real dynamicab  variable belonging
to diJferent eigenvalues are orthogonal.

To prove the theorem, let 16’)  and It”) be two eigenkets of the real
dynamical  variable f,  belonging to the eigenvalues [’ and f” respec-
tively. Then we have the equations

.

tw>  = w>, (14)

w> = eV?* (15)
Taking the conjugate imaginary of (14)  we get

~‘0’15  = 5w.
_Multiplying this by It”) on the right gives

<iw~“>  = tx’lt’9
and multiplying (16) by ([’ 1 on the left gives

aw’> = M’lr>-
Herme,  subtracting, e--5“‘W Je’> = 0, (16)
showing that,  if f’ f: t”, (l’I[“)  = 0 and the two eigenvectors It’>
and lt”>  arc orthogonal. TI& theorem will be referred to as the
orthogonality theorem.

We have been discussing properties of the eigenvalues and eigen-
vectors of a real linear Operator, but hsve not yet considered the
question of whether, for a given real linear Operator, any eigenvalues
and eigenvectors exist, and if so, how to find them.  This question
is in general  very difficult to answer. There is one useful special  case,
however, which  is quite tractable,  namely when the real linear
Operator, 6 sa,y,  satisfies  an algebraic  equation

+(t) = [m+alfn-1+a2[n-2+...+an  7 0, (17)

the coefficients a being numbers. This equation means,  of course,
that the linear Operator d(t) produces the result Zero when applied
to any ket vector or to any bra vector.

Let (17) be the simplest algebraic  equation that E satisfies. Then
it will be shown that

(ar) The number of eigenvalues of 6 is n.

(8) There arc  so many eigenkets of t that any ket whatever tan
be expressed as a sum of such eigenkets.

The algebraic  form +(EJ) tan  be factorized into n linear factors,  the
result being

m = (~-c,)(5-c,)(~-c,)...(~-c,) (18)
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say, the c’s being numbers,  not assumed to be all different. This
factorization tan  be performed with 6 a linear Operator just as weil
as with ,$  an ordinary algebraic variable, since there is nothing
occurring in (18) that does not commute  with f.  Let the quotient
when #@) is divided by (e--c,)  be x,,(e),  so that

&i)  = (&--c,h&)  (i = 1,2,3,....,  12).
Then, for any ket IP),

-

&c,)xA4‘)  P>  = $w)  lP>  = 0, (19)

Nm  x,(5)  1 p> cannot vanish for every ket IP},  as otherwise x,(f)
itself would vanish and we should have g satisfying  an algebraic
equation of degree n- 1, which would contradict the assumption that
(17) is the simplest equation that f satisfies.  If we choose  IP) so that
x,.(f)  IP) does not vanish, then equation (19) Shows  that x,(e)  IP} is
an eigenket of f, belonging to the eigenvalue c,.  The argument holds
for each  value of r from 1 to n, and hence  each  of the c’s is an eigen-
value of [. No other number tan be an eigenvalue of 5, since if 6’ is
any eigenvalue, belonging to an eigenket it’),

w>  = 4’10
and we tan deduce W) IE’>  = w> bt?>,
and since the left-hand side vanishes we must have +(e’) = 0.

To complete the proof of (ac) we must verify that the c’s are all
different. Suppose the c’s arc  not all different and cs occurs m firnes
say, with m > 1. Then +(e) is of the ferm

Ws  = ec,wm
with 8(t) a rational integral function of 4. Equation (17) now gives us

(I-c,Pw)l~~  = 0 (20)
for any ket IA). Since  c,  is an eigenvalue of 5 it must be real, so that
f-c, is a real linear Operator. Equation (20) is now of the Same form
as equation (8) with  f-c, for 5 and 6([)@>  for IP>. From  the theorem
connected with equation (8) we tan infer that

Since  the ket IA} is arbitrary,

&-c,vw  = 0,
which contradicts the assumption that (17) is the simplest equation
that 6. satisfies. Hence  the c’s arc  all different and (01) is proved.

Let x,,(c,.)  be the number obtained when c,,  is substituted for t in
8596.67 D
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the algebraic  expression x(t). Since the C’S  are all different, x,(c,)
cannot vanish.  Consider  now the expression

2

xAt3 1

--.

r  XA%>

(21)

If ce is substituted  for 6 here,  every term in the sum vanishes except
the one for which  r = s,  since  x,(f)  contains (&c,)  as a factor  when
r # 8, and the term for which  r = s is unity, so the whole expression
vanishes. Thus the expression (21) vanishes when 4 is put equal to
any of the n numbers ci,cz,...,c,.  Since, however, the expression
is only of degree n- 1 in f,  it must vanish identically. If we now
apply the linear Operator (21) to an arbitrary ket 1 P) and equate
the result to Zero,  we  get

IQ = 7 &jx.(s)Ip~. (22)

Esch term in the sum on the right here is, according to (19),  an
eigenket of f,  if it does not vanish. Equation (22) thus expresses the
arbitrary ket 1 P) as a sum of eigenkets of f,  and thus (/3) is proved.

As a simple example we may consider a real linear Operator u that
satisfies the equation u2= 1. (23)
Then u has the two eigenvalues 1 and - 1. Any ket ]P) tan be
expressed as Ie = 6(1+4IP>+9(1-~>IP>.
It is easily verified  that the two terms on the right here arc  eigenkets
of Q,  belonging  to the eigenvalues 1 and - 1 respectively, when they
do not vanish.

IO.  Observables
We have made a number  of assumptions about the way in which

states and dynamical variables are to be represented mathematically
in the theory. These assumptions are not, by themselves, laws of
nature,  but become laws of nature when we make some further
assumptions that provide a physical interpretation  of the theory.
Such further  assumptions must take the form of establishing con-
nexions between the results  of observations, on one hand, and the
equations of the mafhematical formalism on the other.

When we  make  an Observation we measure some  dynamical variable.
It is obvious physically that the result of such a measurement must
always be a real number,  so we should expect that any dynamical
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variable that we  tan measure must be a real dynamical variable.
One might think one could measure a complex dynamical variable
by measuring separately its real and pure imaginary Parts.  But this
would involve two measurements or  two observations, which would
be all right in classical mechanics, but would not do in quantum
mechanics, where two observations in general interfere with one
another-it is not in general permissible to consider that two observa-
tions tan be made exactly simultaneously, and if they arc  made in
quick succession the first will usually disturb the state of the System
and introduce an indeterminacy that will affect the second.  We
therefore have to restritt  the dynamical variables that we tan
measure to be real, the condition  for this in  quantum  mechanics
being as given in $ 8. Not every real dynarnical  variable tan be
measured, however. A further  restriction  is needed, as we shall see
Iater.

We now make some assumptions for the physical interpretation of
the t+heory. If the dynamical system is in an eigenstate of a real  :*
dy~mid  variable f,  belonging  to the eigenvalue f’, then a measurement
of ( will certainly give us result  the number [‘. Gonversely,  if  the system
is in a state such that a meusurement of a real dynamical variable (c is
certuin to give one particular  result (instead of giving one or Gother  of
several possible results according to a probability law, as is in general
the case),  then the state is an eigenstate of 5 and the result of the measure-
ment is the eigenvalue of ,$ to which this  eigenstate belongs. These
assumptions are reasonable on account of the eigenvalues of real

‘linear Operators being always real numbers.
Some of the immediate consequences of the assumptions will be

noted. If we have two or more eigenstates of a real dynamical
variable 4 belonging to the same eigenvalue k’,  then any state
formed by superposition of them will also‘  be an eigenstate of 6
belonging to the eigenvalue f’. We tan  infer that if we have two or
more states for which a measurement of f is certain to give the  result
t’, then for any state formed by Superposition ,of them a measurement
of 5 will still be certain  to give the result t’. This gives us some insight
into the physical significance of Superposition of states. Again, two
eigenstates of 4 belonging to different eigenvalues are orthogonal.
We tan infer that two states for which a mea&uement  of [ is certain
to give two different results are orthogonal. This gives us some
insight into the physical significance of orthogonal states.
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When wc measure a real dynamical variable e,  the disturbance
involved in the act of measurement Causes a jump in the state of the
dynamical System. From physical continuity, if we make a second
measurement of the same dynamical variable 4 immediately after
the first, the result of the second measurement must be the Same as
that of the first. Thus after the first measurement has been made,
there  is no indeterminacy in the result of the second. Hence,  after
the first  measurement has been made, the System  is in an eigenstate
of the dynamical variable [,  the eigenvalue it belongs to being equal
to the  result of the first measurement. This conclusion must still hold
if the second measurement is not actually made. In this way we see
that  a measurement always Causes the System  to jump into an eigen-
state  of the dynamical variable that is being measured, the eigenvalue
this eigenstate belongs to being equal to the result of the measure-
ment.

We tan  infer that, with the dynamical System  in any state, any
result of a measurement of a real dynumical  variable is one of its eigen-
values. Conversely, every eigenvalue is a possible result of a meusure-
ment of the dynamicul  variable for some Stute  of the System, since  it is
certainly the result if the state is an eigenstate belonging  to this
eigenvalue. This gives us the physical significance of eigenvalues.
The set of eigenvalues of a real dynamical variable are just the
possible results of measurements of that dynamical variable and the
calculation of eigenvalues is for this reason an important Problem.

Another assumption we  make connected with the physical inter-
pretation of the theory is that, if a certuin  real dynumicul  variabk
4 is measured with the System  in a particulur  state, the states into which
the System  may jump on account of the measurement are such that  the
original state is dependent on them. Now these states into which
the System  may jump are all eigenstates of f, and hence  the original
state is dependent on eigenstates of 6.  But the original state may be
any stafe,  so we tan  conclude that any state is dependent on eigen-
states  of 4. If we define a complete  set of states to be a set such that
any  state is dependent on them, then our conclusion tan  be formu-
lated-the  eigenstates of 4 form a complete set.

Not every real dynamical variable has sufficient  eigenstates to form
a complete  set. Those whose eigenstates do not form complete sets
are not quantities that tan  be measured. We obtain in this way a
further  condition  that a dynamical variable has to satisfy in Order
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that it shall be susceptible  to measurement, in addition to the con-
dition that it shall be real. We call  a real dynamical variable whose
eigenstates form a complete set an observuble.  Thus any quantity
that tan be measured is an observable.

The question now presents itself-Can every observable be
measured? The answer  theoretically is yes. In practice it may be
very awkward, or perhaps even beyond the ingenuity of the experi-
menter, to devise an apparatus which  could measure some particular
observable, but the theory always allows  one to imagine that the
measurement tan be made.

Let us examine mathematically the condition for a real dynamical
variable e to be an observable. Its eigenvalues may consist of a
(finite or infinite) discrete  set of numbers, or alternatively,  they
may consist of all numbers in a certain range, such as all numbers
lying between a and b. In the former  case,  the condition that
any state is dependent on eigenstates of 4 is that any ket tan
be expressed as a sum of eigenkets of 5. ’ In the latter case  the
condition needs modification,  since  one may have an integral instead
of a sum, i.e. a ket 15’) may be expressible as an integral of eigen-
kets of 4,

IP)  = [ It’> dt’,
lt’>  being an eigenket of [ belonging to the eigenvalue f’ and the
range of integration being the range of eigenvalues, as such a ket is
dependent on eigenkets of [. Not every ket dependent on eigenkets
of 4 tan  be expressed in the form of the right-hand side of (24),  since
one of the eigenkets itself cannot,  and more generally any sum of
eigenkets cannot.  The condition for the eigenstates of 6 to form a
complete set must thus be formulated, that any ket IP) tan be
expressed as an integral plus a sum of eigenkets of E,  i.e.

Ip) = j- 14’Q  dt’+ C I&J>,T (26)
where the j[‘c),  /Pd> are all eigenkets  of e,  the labels c and d being
inserted to distinguish them when the eigenvalues 6’ and $ are equal,
and where the integral is taken over the whole range of eigenvalues
and the sum is taken over any selection  of them. If this  condition
is satisfied in the case  when the eigenvalues of ,$ consist of a range
of numbers, then 4 is an observable.

There is a more general case  that sometimes occurs, namely the
eigenvalues of ,$  may consist of a range of numbers together with a
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discrete set of numbers lying outside the range. In this case  the
condition that f shall  be an observable is still that any ket shall be
expressible in the ferm  of the right-hand side of (%),  but the sum
over r is now a sum  over the discrete set of eigenvalues as weil  as a
selection  of those in the range.

It is often very difyicult  to decide mathematically whether a par-
ticular  real dynamical variable satisfies the condition for being an
observable or not, because the whole Problem  of finding eigenvalues
and eigenvectors  is in general very difficult. However, we may have
good reason on experimental grounds for believing that the dynamical
variable tan be measured and then we may reasonably assume that it
is an observable even though the mathematical proof is missing. This is
a thing  we shall frequently do during  the course of development of the
theory, e.g. we shall assume the energy of any dynamical System  to be
always an observable, even though it is beyond the power of present-
day mathematical analysis  to prove it so except in simple Gases.

In the special  case  when the real dynamical variable is a number,
every state is an eigenstate and the dynamical variable is obviously
an observable. Any measurement of it always gives the Same res&,
so it is just a physical constant, like the Charge on an electron.
A physical constant  in quantum  mechanics may thus be looked upon
either as an observable with a Single  eigenvalue or as a mere number
appearing in the equations, the two Points  of view being equivalent.

If the real dynamical variable satisfies an algebraic  equation, then
the result (/3) of the preceding section Shows  that the dynamical
variable is an observable. Such an observable has a finite number
of eigenvalues . Conversely, any observable with a finite number of
eigenvalues satisfies an algebraic equation, since  if the observable 4
has as its eigenvalues f’,  l” ,...,  En,  then

(E-F)(~-~“)*.*(5-~n)IP>  = 0
holds for IP) any eigenket of [,  and thus it holds for any IE’>  what-
ever, because any ket oan be expressed as a sum of eigenkets of 4
on account of t being an observable. Hence

(k-5’)(~-~“)***(~-~“)  = 0. P-9
As an example we may consider the linear Operator IA)@  1, where

IA) is a normalized ket. This linear Operator is real according to (7),
and its Square is

{IA>L4 l]” = IA><A  140 I = W@  I (27)
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since  (AIA) = 1. Thus its ‘Square  equals itself and so it satisfies an
algebraic  equation and is an observable. Its eigenvalues are 1 and 0,
with IA) as the eigenket belonging to the eigenvalue 1 and all kets
orthogonal to IA) as eigenkets belonging to the eigenvalue 0. A
measurement of the observable thus certainly gives the result 1 if
the dynamical System  is in the state corresponding to IA) and the
result 0 if the System  is in any orthogonal state, so the observable
may be described as the quantity which determines whether the
System  is in the state IA) or not.

Before concluding this section  we should examine the conditions
for an integral such as occurs in (24) to be significant.  Suppose IX}
and 13’)  are two kets which tan  be expressed as integrals of eigenkets
of the observable 6,

IX> = j- It’+  dt’, 1 Y>  = f lF’y> dt”,

x and y being used as labels to distinguish the two integrands. Then
we have, taking the conjugate imaginary of the first equation and
multiplying by the second

<XI  Y>  = jj- <Wt”y>  &W”-

Consider now the Single integral

(28)

(29)
*’

From the orthogonality theorem, the integrand here must vanish
over the whole range of integration except the one Point  [” = [‘.
If the integrand is finite at this Point,  the integral (29) vanishes, and
if this holds for all f’,  we get from (28) that (XI Y) vanishes. Now
in general <X 1 Y) does not vanish, so in general (6’~  15’~) must be
infinitely great in such a way as to make (29) non-vanishing and
finite. The form of infinity required for this will be discussed in 5 15.

In our work up to the present it has been implied that our bra and
ket vectors are of finite Iength and their scalar  products are finite.
We see now the need for relaxing this condition  when we are dealing
with eigenvectors  of an observable whose eigenvalues form a range.
If we did  not relax it, the phenomenon of ranges  of eigenvalues could
not occur and our theory would be too weak for most practical
Problems.
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Taking 1 Y) = IX)  above, we get the result that in general (5’~ If’x)
is infinitely great. We shall assume that if 1s’~) # 0

s Gf’x  lt?> 47 > 0, (30)

as the axiom corresponding to (8) of 3 6 for vectors of infinite
length.

The space of bra or ket vectors when the vectors are restricted to
be of finite length and to have finite scalar  products is called by
mathematicians a Hilbert  space. The bra and ket vectors that we
now use form a more general space than a Hilbert space.

We tan  now see that the expansion of a ket 1 P) in the form of the
right-hand side of (26) is unique,  provided there are not two or more
terrns in the sum referring to the same eigenvalue. To prove this
result, let us suppose that two different expansions of 1 P) are pos-
sible. Then by subtracting one from the other, we get an equation
of the form

0 = s Ib> dt' + 1 It?),8 (31)
a and b being used as new labels for the eigenvectors,  and the sum
over s including all terms left after the subtraction  of one sum from
the other. If there is a term in the sum in (31) referring to an eigen-
value fl not in the range, we get, by multiplying (31) on the left by
(&l  and using the orthogonality theorem,

which  contradicts (8) of 5 6. Again, if the integrand in (31) does not
vanish for some eigenvalue 5” not equal to any (6 occurring in the
sum, we get, by multiplying (3 1) on the left by (["a 1 and using the
orthogonality theorem,

0  =  (f”al(‘a>  dt’,
f

which  contradicts (30). Finally, if ‘there is a term in the sum in (31)
referring to an eigenvalue [i in the range, we get, multiplying (31) on
the 14%  by (fb 1,

0 = <~W’~> dt’ +<~tWt~>s (32)

and multiplying (31) on the left by @al

0 = <&lf’a>  dt’ +C&4@>.s (33)

Now the integral in (33) is finite, so @aIftb)  is finite and @b Ipa) is
finite.  The integral in (32) must then be Zero,  so (ftbIetb)  is Zero and
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we again have a contradiction. Thus every term in (31) must vanish
and the expansion of a ket lP>  in the form of the right-hand side of
(25) must be unique.

11. Functions  of observables
Let ,$  be an observable. We tan multiply it by any real number k

and get another observable k(. In Order  that our theory may be
self-consistent it is necessary that, when the System  is in a state such
that a measurement of the observable 5 certainly gives the result t’,
a measurement of the observable k[ shall  certainly give the result Er.
It is easily verified that this condition is fulfilled. The ket correspond-
ing to a state for which a measurement of f certainly gives the result
6’ is an eigenket of 4, It’>  say, satisfying

This equation leads to

showing that 14’) is an eigenket of k( belonging to the eigenvalue kf’,
and thus that a measurement of k( will certainly give the result -4’.

More generally, we may take any real function of f,  f(l) say, and
consider it as a new observable which is automatically measured
whenever 4 is measured, since  an experimental determination of the
value of f also provides the value Off([).  We need not restritt  f(f) to
be real, and then its real and pure imaginary Parts  are two observables
which are automatically measured when 8 is measured. For the theory
to be consistent  it is necessary that, when the System  is in a state
such that a measurement of 6 certainly gives the result f’, a measure-
ment of the real and pure imaginary Parts  Off([)  shall  certainly give
for results the real and pure imaginary Parts  off(6’). In the case  when
f(t) is expressible as a power series

f(6) = c,+c,~+c2~2+c,~3+**.,
the c’s being numbers, this condition tan  again be verified by elemen-
tary algebra. In the case  of more general functions  f it may not be
possible to verify the condition. The condition may then be used to
define f(f), hi hw c we have not yet defined mathematically. In this
way we tan get a more general definition of a function of an observ-
able than is provided by power series.

We define f(f) in general to be that linear Operator which satisfies

m It’>  = fr> IQ’> (34)
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for every eigenket 1s’)  of [, f(f’) b eing a number for each  eigenvalue 5’.
It is easily seen that this definition is self-consistent when applied to
eigenkets 14’) that are not independent. If we have an eigenket If’A)
dependent on other eigenkets of 6, these other eigenkets must all
belong to the same eigenvalue t’, otherwise we should have an equa-
tion of the type (31)) which we have seen is impossible. On multiplying
the equation which expresses I[‘A)  linearly in terms of the other
eigenkets of 4 by f(4) on the left, we merely multiply each  term in it
by the number f(e’), so we obviously get a consistent  equation.
Further,  equation (34) is suficient  to define the linear Operator f(e)
completely, since to get the result Off(f)  multiplied into an arbitrary
ket IP),  we have only to expand IP) in the form of the right-hand
side of (25) and take

The conjugate complex f(E) of f(f) is defined by the conjugate
imaginary equation to (34),  namely

<5vm = 3@3tc 19
holding for any eigenbra (P’I,  f(f’) being  the conjugate complex -
function to f([‘). Let us replace f’ here by 4” and multiply the
equation on the right by the arbitrary ket 1 P). Then we get, using
the expansion (26) for IP),

cmIp>  = #iY&“K5”Ip>

= 13WY’IW dt’ + ~,fCWlbO

= j=3(F):5”  IO> W +,fFW’lC’~> (36)
with the help of the orthogonality theorem, (t”  If”d) being under-
stood to be zero if LJ” is not one of the eigenvalues to which the terms
in the sum in (25) refer. Again, putting the conjugate complex
function 3( f’) for f(f’) in (35) and multiplying on the left by {f” 1,
we get

C%&W’> = ~3(~W”l~‘c>  dt’  +3(5”)GT’d>.
The right-hand side here equals that of (36),  since the integrands
vanish for 5’ # r, and hence

<rlf@  IJ?  = <mo In.
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This holds for (4” 1 any eigenbra and 12’) any ket, so

Thus the conjugate cornplex of the linear Operator f(4) is the conjugate
conaplex function f of e.

It follows as a corollary that if f  ([‘) is a real function of t’, f(t) is
a real linear Operator. f(f) is then also an observable, since  its
eigenstates form a complete set, every eigenstate of 6 being also an
eigenstate of f (k).

With the above definition we are able to give a meaning  to any
function f of an observable, provided  only thut  the domain  of existente
of the function of a real variable f(x) includes  all the eigenvalues of the
observable. If the domain  of existente contains other Points  besides
these eigenvalues, then the values Off(x)  for these other Points  will
not affect the function of the observable. The function need not be
analytic  or  continuous. The eigenvalues of a function f of an observ-
able are just the function f of the eigenvalues of the observable.

It is important to observe that the possibility of defining a function
f of an observable requires the existente  of a unique number f(x) for
each  value of x which  is an eigenvalue of the observable. Thus the
function f(x) must be Single-valued. This may be illustrated by con-
sidering the question: When we have an observable f(A) which  is a
real  function of the observable A, is the observable A a function of
the observable f (A ) 1 The answer  to this is yes, if diff erent eigenvalues
A’  of A always lead to different values of f(A’).  If, however, there
exist two different eigenvalues of A, A’ and A” say, such that
f  (A’) = f(A”), then, corresponding to the eigenvalue f(A’)  of the
observable f(A), there will not be a unique eigenvalue of the observ-
able A and the latter will not be a function of the observable f(A).

It may easily be verified mathematically, from the definition, that
the sum or product of two functions  of an observable is a function
of that observable and that a function of a function of an observable
is a function of that observable. Also it is easily seen that the whole
theory of functions of an observable is  symmetrical between bras and
kets and that we could equally weil  work from  the equation

Wf (0 = f  b?)  ~5’  1 (38)
instead of from (34).

We shall  conclude this section  with a discussion  of two examples
which  are of great practical im.portance, namely the reciprocal and
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the Square root. The reciprocal of an observable exists if the observ-
able does not have the eigenvalue Zero.  If the observable cx  does not
have the eigenvalue Zero, the reciprocal observable, which we call  a--l
or  I/cz,  will satisfy OL-qx’)  = a’-lIQI’)> (39)

where ja’>  is an eigenket of 01  belonging to the eigenvalue a’. Hence

cwl~a’)  = ad-lla’) = Ia’).

Since  this holds for any eigenket Ia’), we must have

cmF1 = 1. (40)

Similarly, cy-% = 1. (41)
Either  of these equations is sufficient to determine a--l completely,
provided 01  does not have the eigenvalue Zero. To prove this in the
case  of (40),  let x be any linear Operator satisfying the equation

ax = 1

and multiply both sides on the left by the a-1 defined by (39). The
result is &-l&x = (y-1

and hence  from (41) X -1=a .

Equations (40) and (41) tan be used to define the reciprocal, when
it exists, of a general linear Operator CII,  which  need not even be real.
One of these equations by itself is then not necessarily sufficient. If
any two linear Operators (I!  and ß have reciprocals, their product aß
has the reciprocal (aß)-1 = ß-kl, (42)
obtained by taking the reciprocal of each  factor and reversing their
Order. We verify (42) by noting that its right-hand side gives unity
when multiplied by aß, either on the right or  on the left. This reci-
procal law for products tan  be immediately extended to more than
two factors,  i.e., (aßy...)-1  = . ..y-lß-101-1.

The Square root of an observable a always exists, and is real if CII
has no negative eigenvalues.  We write it & or &. It satisfies

dcxIa’>  = f&‘lcY’), (43)
Ia’>  being  an eigenket of c11  belonging to the eigenvalue 01’.  Hence

&&%la’)  = &‘&‘lc%‘) = a’la’)  = a~cx’),

and since  this holds for any eigenket ja’>  we must have

4da = a. (44)
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On account of the ambiguity  of sign  in  (43) there  will  b8 several
Square roots. To fix one of them  we  must  specify a particular  sign
in (43) for each  eigenvalue. This  sign  may  vary irregularly  fiom one
eigenvalue  to the next and equation (43) will  always  define  a linear
Operator  & satisfying  (44) and forming  a square-root function of a.
If there  is  an eigenvalue  of a with  two or  more  independent eigenkets
belonging  to it,  then  we  must,  according  to our definition  of a func-
tion,  have  the same  sign  in  (43) for each  of these  eigenkets.  If we
took different signs,  however,  equation (44) would still  hold,  and hence
equation (44) by itself is  not sufficient  to define  &,  except in  the
special  case  when  there  is  only one independent  eigenket  of a belong-
ing to any eigenvalue.

The  number  of different Square roots of an observable  is 2n,  where
n is  the total number  of eigenvalues  not Zero. In practice  the square-
root function is used  only for observables  without negative eigen-
values  and the particular  Square root that  is  useful  is  the one for
which  the positive sign  is  always  taken  in (43). This  one will  be called
the  positive  squure root.

12. The general physical interpretation
The  assumptions  that  we made at the beginning  of 5 10 to get a

physical  interpretation of the mathematical  theory are of a rather
special  kind,  since  they tan  be used  only  in connexion  with eigen-
states.  We  need some  more  general  assumption  which  will  enable  us
to extract physical  information from  the mathematics  even when  we
are not deeling with  eigenstates.

In  classical  mechanics  an observable  always,  as we  say,  ‘has  a
value’ for any  particular  state  of the System.  What is  there  in  quan-
turn mechanics  corresponding  to this?  If we take  any  observable 6
and any two  states  x and y, corresponding  to the vectors (XI and Iy),
then  we  tan  form  the number  (xj,$ly).  This  number  is not very
closely  analogous  to the value  which  an observable tan  ‘have’  in  the
classical  theory,  for three  reasons,  namely,  (i) it refers  to two states
of the System,  while  the classical  value  always  refers  to one,  (ii)  it is
in  general  not a real  number,  and (iii)  it is not uniquely  determined
by the observable and the states,  since  the vectors (XI and 1~)  contain
arbitrary  numerical  factors. Even if we  impose  on (XI and 19) the
condition that  they shall  be normalized,  there  will  still  be an undeter-
mined  factor of modulus  unity  in  (x Ie 1~).  These  three  reasons  cease
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to apply, however,  if we  take the two states to be identical and 1~)
to be the conjugate imaginary vector to (XI. The number that we
then get, namely (x It IX>, is necessarily real, and also it is uniquely
determined  when  (x j is normalized, since if we multiply (XI by the
numerical  factor ek, c being some  real number, we must multiply
IX) by e-ZC and (xl[lx) will be unaltered.

One  mighf  thus  be inclined to make the tentative assumption fhat
the observable 5 ‘has the value’ (xl[lx) for the state x, in a sense
analogous to the classical sense. This would not be satisfactory,

+ though, for the following reason. Let us fake a second  observable r],
which would have by the above assumption the value (~17 IX> for
this  same  state. We should then expect, from classical analogy, fhat
for this statte  the sum of the two observables would have a value
equal to the sum of the values of the two observables separately and
the product of the two observables would have a value equal to the
product of the values of the two observables separately. Actually, the
tentative assumption would give for the sum of the two observables
the value (x~[+T~x),  which is, in fact,  equal to the sum of (xl[lx) .
and <x  17  IX),  but for the product  it would give the value (x lt7  IX)

or wqw, neither of which is connected in any simple way with

WW  and  Wrllx)~
However, since things go wrang  only with the product and not with

the sum, it would be reasonable to cal1  <Xerox) the average value of
the observable f for the state x. This is because  the average  of the
sum of two quantities must equal the sum of their averages, but the
average  of their produot need not equal the product of their averages.
We therefore make the general assumption that if the meusurement

ii of the observable f for the system  in the stute correqonding  to IX} is
made a lurge number of times,  the average  of all the results  obtained  will

j be +4~lx>,  P rovided IX) is normalixed.  If IX) is not normalized, as is
necessarily the case  if the stafe x is an eigenstate of some observable
belonging to an eigenvalue in a range, the assumption becomes that
the average  result of a measurement of Q is proportional to (Xerox),
This general assumption provides a basis for a general physical inter-
pretation of the fheory.

The expression that an observable ‘ has a particular  value’ for a
particular  state is permissible in quantum  mechanics in the spe&1
case  when a measurement of the observable is certain to lead to the
particular  value, so that fhe state  is an eigenstate of the observable.



It may easily be verified from the algebra that, with this  restricted
meaning for an observable ‘ having a value’, if two observables have
values for a particular state, then for this state fhe sum’of the two
observables (if this sum is an observablet)  has a value equal to the
sum of the values of the two observables separately and the product
of the two observables (if this product is an observable$) has a value
equal to the product of the values of the two observables separately.

In the general case  we cannot  speak of an observable having a value
for a particular state, but we tan  speak of its having an average  value
for the state. We tan go further  and speak of the probability of its
having any specified value for the state, meaning the probability of
this specified value being obtained when one makes a measurement of
the observable. This probability tan be obtained from the general
assumption in the following way.

Let the observable be f and let the state correspond to the normal-
ized ket IX>. Then the general assumption tells us, not only that the
average  value of 5 is (X Itlx), but also that the average  value of any
function of [,f(t)  say, is (x jf(&  IX). Takef(6)  to be that function of 4‘
which is equal to unity when f = a, a being some real number, and
zero otherwise. This function of [ has a meaning according to our
general theory of functions  of an observable, and it may be denoted
by 8ta  in conformity with the general notation of the Symbol  6 with
two suffixes given on p. 62 (equation (17)). The average  value of
this  function of (1‘  is just the probability, P,  say, of 4 having the value
a. Thus (45)
If a is not an eigenvalue of f,  66, multiplied into any eigenket of f is
Zero,  and hence  Sta  = 0 and P,  = 0. This agrees with a conclusion
of 6 10, that any result of a measurement of an observable must be
one of its eigenvalues.

If the possible results of a measurement of 6 form a range of num-
bers, the probability of f having exactly a particular value will be
zero in most physical Problems. The quantity of physical importante
is then the probability of f having a value within a small range, say
fiom a to a+da.  This probability, which we may call  P(a) da, is

t This is not obviously so, since  the sum may  not have sticient  eigenstates  to
form a complete  set, in which  case  the sum, considered as a Single  quantity, would
not be measurable.

$ Here  the reality condition  may fail, as weil  as the condition  for the eigenstetes
to form a complete  set. I
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equal to the average  value of that function of 6 which is equal to
unity  for f lying within the range a to a+da and zero otherwise.
This function of 6 has a meaning according to our general theory of
functions  of an observable. Denoting it by x(e),  we have

w dal = <x  IX(f) IX>* (46)
If the range a to a+da does not include any eigenvalues of f,  we
have  as above ~(8) = 0 and P(a) = 0. If IX) is not normalized, the
right-hand sides of (45) and (46) will still be proportional to the
probability of (t having the value CG and lying within the range a to
a+da respectively.

The assumption of $10, that a measurement of LJ is certain to give
the result  [’ if the System  is in an eigenstate of 6 belonging to the
eigenvalue Ir, is consistent  with the general assumption for physical
interpretation and tan in fact be deduced from it. Working from the
general assumption we see that, if Ie’) is an eigenket of 6 belonging
to the eigenvalue e’,  then, in the case  of discrete  eigenvalues of 8,

&&J  16’) = 0 unless a = f’,

and in the case  of a range of eigenvalues of e

#lt’)  = 0 unless the range a to a+da includes 6’.

In either case,  for the state corresponding to IE’>,  the probability of
[ having any value other than f is Zero.

An eigenstate of 6 belonging to an eigenvalue 6’ lying in a range
is a state which cannot  strictly be realized in practice, since  it would
need an infinite amount of precision to get 6 to equal exactly t’.
The most that could be attained in practice would be to get ‘$ to lie
within a narrow range about the value 4’.  The System  would then
be in a state approximating to an eigenstate of 4.  Thus an eigenstate
belonging to an eigenvalue in a range is a mathematical idealization
of what tan  be attained in practice. All the Same such eigenstates
play a very useful  role in the theory and one could not very weh do
without them. Science contains many examples of theoretical con-
cepts  which are hmits  of things met with in practice and arc useful
for the precise  formulation  of laws  of nafure, although they are not
realizable  experimentally, and this is just one more of them. It may
be that the infinite length of the ket vectors corresponding to these
eigenstates is connecfed with their unrealizability, and that all realiz-
able states correspond to ket vectors that tan be normalized and that
form a Hilbert  space.
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13. Commutability and compatibility
A state may be simultaneously an eigenstate of two observables.

If the state corresponds to the ket vector IA) and the observables arc
4 and 7,  we should then have the equations

iV>  = 5’IA>,

rllA>  = q’lA>,

where t’ and 71’ arc  eigenvalues of 4 and 7 respectively.  We tan now
deduce

5qIA>  = Eq’lA>  = h+O  = MA>  = $‘IA> = $dA>,
or @r-rlOIA>  = 0.
This suggests that the chances  for the existente of a simultaneous
eigenstate are most favourable if &- q[ = 0 and the two observables
commute. If they do not commute a simultaneous eigenstate is not
impossible, but is rather exceptional. On the other hand, if &ey  do
commute there exist  so many  simultaneous eigenstutes  that  they ferm a
complete  set, as will now be proved.

Let [ and 71  be two commuting observables. Take an eigenket of
7, 17’)  say, belonging to the eigenvalue q’, and expand it in terms
of eigenkets of 5 in the form of the right-hand side of (26),  thus

hf> = J wc>  at’ + c lbifo. (47)r
The eigenkets of 6 on the right-hand side here have 7’ inserted  in
them as an extra label, in Order  to remind us that they come  from
the expansion of a special  ket vector, namely Iq’), and not a general
one as in equation (25). We tan  now show that each  of these  eigen-
kets of f is also an eigenket of 7 belonging to the eigenvalue 7’.  We
have

0 = h-$)Iq’)  = j- (y-‘f)l~‘~‘c)  dt’  + 2 (d)lStrll~>e (48)7
Now the ket (q-q’) Ipq’d)  satisfies

w3wwo = h-qfwqfa)  = k~-~xwid>
= iF’(q--9’)  lP@>,

showing that it is an eigenket of ,$ belonging to the eigenvalue p,
and similarly the ket (q-- 7’) I,$‘q’c)  is an eigenket of 6 belonging to
the eigenvalue ff. Equation (48)  thus gives an integral plus a sum
of eigenkets of e equal to Zero,  which,  as we have seen with equation

3505.67 E
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(3l),  is impossible unless  the integrand and every term in the sum
vanishes. Henne

k-77’)IWc> = 0, br--71’m?‘d)  = 0,
so that all the kets appearing on the right-hand side of (47)  are
eiged.mts  of r]  as well as of e. Equation (47)  now gives 117’) expanded
in terms of simultaneous eigenkets of 5 and r].  Since any ket tan be
expanded in terms of eigenkets Iq’>  of 7,  it follows that any ket tan
be expanded in terms of simultaneous eigenkets of [ and 7,  and thus
the  simultaneous eigenstafes form a complete set.

The  above simultaneous eigenkets of 4 and 7, Ie’q’c) and 1 pq’d),
are labelled by the eigenvalues 6’ and q’,  or e and q’,  to which they
belong, together with the labels c and d which may also be necessary.
The procedure of using eigenvalues as labels for simultaneous eigen-
vectors will be generally followed in the future, just as it has been
followed in the past for eigenvectors  of Single  observables.

The converse to the above theorem says  that, if 5 and 7 are two *
observables such that their simultaneous eigenstates form a complete set,
then f and 7 wmmute. To prove this, we note that, if jt’q’> is a
simultaneous eigenket belonging to the eigenvalues 4’  and v’,

@l--77i3  kf’rl’) = ~~‘?I’-&?) Ii?rl’) = 0. (49)
, Since the simultaneous eigenstates form a complete set, an arbitrary

ket IP>  tan  be expanded in terms of simultaneous eigenkets l[‘q’),
for each  of which (49)  holds, and hence

(h-m-e = 0
and so t+-174‘=  0.

The idea of simultaneous eigenstates may be extended to more
than two observables and the above theorem and its converse still
hold, i.e. if any set of observables commute,  each  with all the others,
their simultaneous eigenstates form a complete set, and conversely.
The Same arguments used for the proof with two observables are
adequate for the general case;  e.g.,  if we have three commuting
observables f,  7,  5, we tan expand any simultaneous eigenket of 4‘
and r) in terms of eigenkets of 5 and then show that each  of these
eigenkets of 5 is also an eigenket of 5 and of 7. Thus the simultaneous
eigenket of e and 7 is expanded in terms of simultaneous eigenkets
of e,  v, and f, and since  any ket tan be expanded in terms of simul-
taneous eigenkets of t and 7, it tan also be expanded in terms of
simultaneous eigenkets of 4,  11, and 5.
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The orthogonality theorem applied to simultaneous eigenkets teils
us that two simultaneous eigenvectors  of a set of commuting observ-
ables  are orthogonal if the sets of eigenvalues to which they belong
differ in any way.

Owing to the simultaneous eigenstates of two or more commuting
observables forming a complete set, we tan set up a theory of func-
tions of two or more commuting observables on the same lines as the
theory of functions of a Single  observable given in $ 11. If 5,  7, c,...
are commuting observables, we define a general function f of them
to be that linear Operator f([, 7,  (I,  . ..) which satisfies

f<& rl,  L.4  kw5’*.->  = fk!‘,  $9 L.)l4’77’5’.-1, w L

where \,$‘q’c’..  .) is any simultaneous eigenket of e,~, c,...  belonging
to the eigenvalues e’,  q’,  c’,...  . Here f is any function such that
f(a,  b, c,... ) is defined for all values of a, b, c,. . . which are eigenvalues
of &  7,  L respectively. As with a function of a Single observable
defined by (34),  we tan  show that f(e,  7, c,...)  is completely deter-
mined by (50),  that

corresponding to (37),  and that if f(a,  b,  c,  . ..) is a real function,
f([, q,  5 ,...)  is real and is an observable.

We tan now proceed to generalize the results (45) and (46). Given
a set of commuting observables [, 7,  c,...,  we may form that function
of them which is equal to unity when 6 = a, 7 = 6, 5 = c ,...,  a, b, c ,...
being real numbers, and is equal to Zero when any of these  conditions
is not fulfilled. This function may be written  6ta  6,, $+...,  and is in
fact just the product in any Order  of the factors Sta,  $,,  6cC,.  . . defined
as functions of Single  observables, as may be seen by substituting this
product for f(e,  7, c,...) in the left-hand side of (50). The average
value of this function for any state is the probability, Ph...  say, of .
[, ~,c  ,...  having  the values a, b, c ,... respectively for that state.  Thus
if the state corresponds to the normalized ket vector  IX),  we get from
our general assumption for physical interpretation

Pabc... = <x\a,$as$  a&***  IX>* (61)

cbc... is Zero unless each  of the numbers a, b,  c,. . . is an eigenvalue of
the corresponding observable. If any of the numbers a, b, c,... is an
eigenvalue in a range of eigenvalues of the corresponding observable,
PtiC,..  will usually again be Zero,  but in this case  we ought to replace
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the requiremenf  that this ohservable  shall have exactly one value by
the requirement  that it shall have  a value lying within a small  range,
which involves replacing one of the 6 factors  in (51) by a factor like
the ~(6) of equafion  (46). On carrying  out such a replacement  for
each  of the observables 4,  7, 5 ,..., whose corresponding numerical
value a, b, c,... lies in a range  of eigenvalues,  we shall get a proba-
bility which does not in general vanish.

If certain observables commute, there exist  states for which they all
have particular values,  in the sense explained at the bottom of p. 46,
namely the simultaneous eigenstates. Thus  one tan  give a wuning  to
several commuting observables having  values at the  Same  time. Further,  we
see from (61) that for any state one tun  give a meaning  to  the  probability
of partklar  results being  obtained for simultaneous measurements  of
several wmmuting  observables. This conclusion is an important new
development . In general  one cannot make an Observation on a
System  in a definite state without  disturbing that state and spoiling
it for the purposes of a second Observation. One cannot  then give
any meaning to the two observations being made simultaneously.
The above conclusion teils us, though, that in the special  case  when
the two observables commute, the observations are to be considered
as non-interfering or compatible,  in such a way that one tan  give a
meaning to the two observations being made simultaneously and tan
discuss  the probability of any particular results being obtained. The
two observations may, in fact, be considered as a Single Observation
of a more complicated type,  the result of which is expressible by two
numbers instead of a Single  number. Prom the Point  of view of general
theory,  any two or more commuting observables may  be counted  us a
Single observable,  the  result of  a measurement of which consists of two or
more numbers. The states for which this measurement is certain to t
lead to one particular result are the simultaneous eigenstates.
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14. Basic vectors
IN the preceding chapters  we sef up an algebraic  scheme involving
certain abstract quantities of three kinds, namely bra vectors, ket
vectors, and linear Operators, and we expressed some of the funda-
mental laws of quantum  mechanics in terms of them. It would be
possible to continue to develop the theory in terms of these abstract
quantities and to use them for applications to particular Problems.
However, for some purposes it is more convenient to replace the
abstract quantities by sets of numbers with analogous mathematical
properties and to work in terms of these sets of numbers. The proce-
dure is similar  to using coordinates in geometry, and hss the advan-
tage of giving one greater mathematical power for the solving of
particular Problems.

The way in which  the abstract quantities arc  to be replaced by
numbers is not unique,  there being many possible ways corresponding
to the many Systems of coordinates one tan have in geometry. Esch
of these ways is called a representution  and the set of numbers that
replace an abstract quantity is called the representutive  of that
abstract quantity in the representation. Thus the representative of
an abstract quantity corresponds to the coordinates of a geometrical
Object.  When one has a particular Problem  to work out in quantum
mechanics, one tan  minimize the labour  by using a representation
in which  the representatives of the more important abstract quanti-
ties occurring in that Problem  are as simple as possible.

To set up a representation in a general way, we take a complete
set of bra vectors, i.e. a set such that any bra tan  be expressed
linearly in terms of them (as a sum or an integral or possibly an
integral plus a sum). These bras we cal1 the basic bras of the repre-
sentation. They are sufficient,  as we shall  see, to fix the representation
completely.

Take any ket Ia) and form its scalar  product with each  of the basic
bras. The numbers so obtained constitute the representative of ja).
They are sufficient  to determine the ket Ia) completely, since  if there
is a second ket, Ia,)  say, for which  these numbers are the Same, the
differente Ia)- Ia,) will have its scalar  product with any basic  bra
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vatishing,  and hence  its scalar  product with any bra whatever will
van&  and ja)- Ia,) itself will van&

We may suppose  the basic bras to be labelled by one or more

Parameters, h,,  h, ,..., h,,  each  of which may take on certain numerical
values, The basic bras will then be written (h, AZ..  .h,  1 and the repre-
sentative  of ja> will be written (h, X,... AU ja>.  This representative will
now consist  of a set of numbers, one for each  set of values that

hl,  &r..*, h, may have in their respective  domains.  Such a set of
numbers  just  forms a fmction of the variables A1,  AZ,...,  AU. Thus  the
representative  of a ket may be looked upon either as a set of numbers
or as a function  of the variables used to label the basic bras.

If fhe number  of independent states of our dynamical System  is
finite, equal  to n say, it is sufficient  to take n basic bras, which may
be labelled by a Single Parameter h taking on the values 1,2,3,..., n.
The representative of any ket Ia) now consists of the set of n numbers
(1 Ia>,  <21@,  (3 Ia)>*.*, (nlu),  which are precisely the coordinates of
the vector Ia) referred to a System  of coordinates in the usual way.
The idea of the representative of a ket vector is just a generalization
of the idea of the coordinates of an ordinary vector and reduces  to
the latter when the number of dimensions of the space  of the ket
vectors is finite.

In a general representation there is no need for the basic bras to
be all independent. In most representations used in practice, how-
ever,  they are all independent, and also satisfy the more stringent
condition that any two of them are orthogonal. The representation
is then called an orthogonal representation.

Take an orthogonal representation with basie  bras (h, h,...h,  1,
labelled by Parameters A1,  A2,. . . , X,  whose domains  are all real. Take
a ket Ia> and ferm its representative (h,h,...A,lu). Now form the
numbers A,(hlh,...h,  Ia) and consider them as the representative of
a new ket Ib). This  is permissible since  the numbers forming the
represenfative  of a ket are independent, on account of the basic bras
being independent,  The ket Ib) is defined by the equation

(&&&$Jb> = h,<A,h,...h,lu).

The ket Ib) is  evidently a linear function of the ket Ia}, so it may
be eonsidered  as the  result of a linear Operator applied to la;>. Cabg
this  linear Operator L,,  we have

10 = & Ia>
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and hence (X,  &...h,,  1 L, Ia) = h,(X, h,...X,  Ia).

This equation holds for any ket ja), so we get

5 6

(h, h,...h,  1 L, = h,(X, X,...h,  1. (1)
Equation (1) may be looked upon as the definition of the linear
Operator L,. It Shows  that euch  basic bra is an eigenbra of L,, the
value of the Parameter X,  being the eigenvalue belonging  to it.

From the condition that the basic bras are orthogonal we tan
deduce that L, is real and is an observable. Let Xi,  hk,.  . .,  & and
x;, Ai,..., Ai be two sets of values for the Parameters h,,  Ag,. . .,  h,.
We have, putting h”s  for the X’s in (1) and multiplying on the right
by IA;h&..Ac),  the conjugate imaginary of the basic bra (A2ha...AiI,

{x;h~...XulL,Ih:ha...~)  = h;(h;A$...~lh;~~...hU).
Interchanging X”s and h”‘s,

{Xi x;..q  L,  p;  hk...G)  = X;(h;  h;...A.p; Aß...&).

On account of the basic bras being orthogonal, the right-hand sides
here vanish unless hr = & for all T  from 1 to u, in which case  the
right-hand sides are equal, and they are also real, Ai  being real. Thus,
whether the X”‘s  are equal to the X”s or  not,

--F--~--<h;hB...~IL,IX;hij...~)  = (X,X,...~IL,Ih;~~...Xu>

= (Xih2...XuI~,li\;)12...~)

from equation (4) of $ 8. Since the (h;  Ai..  .&  1’s form a complete set
of bras and the /Ai  A~...~)‘s  form a complete set of kets, we tan
infer that L, = -f;,.  The further  condition required for L, to be an
observable, namely that its eigenstates shall  form a complete set, is
obviously satisfied since  it has as eigenbras the basic bras, which
form a complete set.

We tan  similarly introduce linear Operators L,, Lw.., L, by multi-
plying (h,  h,.  . .h,  Ia) by the factors A2,  X,,  . . . , h, in turn and considering
the resulting sets of numbers as representatives of kets. Esch of these
L’s tan be shown in the Same way to have the basic bras as eigenbras
and to be real and an observable. The basic bras are simultaneous
eigenbras of all the L’s. Since these simultaneous eigenbras form a
complete set, it follows from a theorem of $13 that any two of the
L’s commute.

It will now be shown that, if &,f2,...,  fU  are any set of commuting
observables, we tun set up an orthogonal representution  in which the basic
bras  are simultuneous  eigenbras  of 5;, [%,...,  fU.  Let us suppose 6rst  that
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there ia  only  one independent simultaneous eigenbra of fl, t2,...,  4,
belonging to any set of eigenvalues f;, &.,..  . , 5;. Then we may take
these simultaneous eigenbras, with arbitrary numerical  coefficients, as
our basic bras. They are all orthogonal on account of the orthogonality
theorem (any two of them will have at least one eigenvalue different,
which is sufficient to make them orthogonal) and there are sufficient
of them to form a complete set, from a result of 6 13.  They may
conveniently be labelled by the eigenvalues & SS,...  , & to which they
belong, so that one of them is written (6; (32..&].

Passing  now to the general case  when there are several independent
simultaneous eigenbras of &,  t2,...,  CU belonging to some sets of eigen-
values,  we must pick out from all the simultaneous eigenbras belong-
ing to a set of eigenvalues 6;)  &, . . . , CU a complete subset, the members
of which are all orthogonal to one another. (The condition of com-
pleteness here means that any simultaneous eigenbra belonging to the
eigenvalues [i, [i,..., & tan be expressed linearly in terms of the
members of the subset.) We must do this for each  set of eigenvalues
Ei,  &,...,  & and then put all the members of all the subsets together
and take them as the basic bras of the representation. These bras
are all orthogonal, two of them being orthogonal from the orthogona-
lity theorem if they belong to different sets of eigenvalues and from
the special  way in which they were Chosen if they belong to the same
set of eigenvalues, and they form altogether a complete set of bras,
as any bra tan  be expressed linearly in terms of simultaneous eigen-
bras and each  simultaneous eigenbra tan then be expressed linearly
in terms of the members of a subset. There are infmitely  many ways
of choosing the subsets, and each  way provides one orthogonal
representation.

For labelling the basic bras in this general case,  we may use the
eigenvalues & &..., & to which they belong, together with certain
additional real variables h,,  &,  . . . , &, say , which must be introduced to
distinguish basic vectors belonging to the same set of eigenvalues
from one another. A basic bra is then written (k; &...&  hIh,...h,I.
Corresponding  to the variables X,,  X,,  . . .,  &,  we tan  define  linear
Operators L,,  I&,..., L, by equations like  (1) and tan  show that these
linear Operators have the basic bras as eigenbras, and that they are
real and observables, and that they commute  with one another and
with the 6’s. The basic bras are now simultaneous eigenbras of all
the commuting observables fl, e2  ,...,  tu,  L,,  L,  ,...,  L,.
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Let us define a campbete set of commuting obseruables  to be a set of
observables which all commute  with one another and for which there
is only one simultaneous eigenstate belonging to any set of eigen-
values. Then the observables fl, fZ ,...,  [,, L,,  L,  ,...,  L, form a complete
set of commuting observables, there being only one independent simul-
taneous eigenbra belonging to the eigenvalues e;, 62 ,...,  &,  h,,  &. ,...,  4,
namely the corresponding basic bra. Similarly the observables

L,,  L2,..., L, defined by equation (1) and the following work form
a complete set of commuting observables. With the help of this
definition the main results of the present section tan be concisely
formulated thus:

(i) The basic bras of an orthogonal representation are simul-
taneous eigenbras of a complete set of commuting observ-
ables.

(ii) Given a complete set of commuting observables, we tan  set .
up an orthogonal representation in which the basic bras are
simultaneous eigenbras of this complete set.

(iii) Any set of commuting observables tan be made into a com-
plete commuting set by adding  certain observables to it.

(iv) A convenient way of labelling the basic bras of an orthogonal
representation is by means of the eigenvalues of the complete
set of commuting observables of which the basic bras are
simultaneous eigenbras.

The conjugate imaginaries of the basic bras of a representation we
cal1 the basic kets of the representation. Thus, if the basic bras arc
denoted by (h, &. ..h,  1,  the basic kets will be denoted by Ih,  &..h,>.
The representative of a bra (b 1 is given by its scalar  product with
each  of the basic kets, i.e. by (blh,  A,...h,).  It may, like the repre-
sentative of a ket, be looked upon either as a set of numbers or as a
function of the variables h,,  &,.  . .,  X,. We have

(b /Al h,.  . .A,> = (h, h,...h,  1 b),

showing that the representatiue  of a bra is the  conjugate  complex  of the
representative  of tke conjugate  imuginary  Eet. In an orthogonal repre-
sentation, where the basic bras are simultaneous eigenbras of a com-
plete set of commuting observables, fx,  f2,...,  & say, the basic kets
will be simultaneous eigenkets of fl, e2,...,  &.

We have not yet considered the lengths of the basic vectors.  With
an orthogonal representation, the natura1 thing to do is to normalize
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the basic vectors, rather than leave their lengths arbitrary, and so
introduce a further  Stage of simplification  into the representation.
However, it is possible to normalize them only if the Parameters
which label them all take on discrete  values. If any of these para-
meters are continuous variables that tan  take on all values in a range,
the basic vectors are eigenvectors  of some observable belonging to
eigenvalues in a range and are of infinite length, from the discussion
in $ 10 (see.p.  39 and top of p. 40).  Some other procedure is then
needed to fix the numerical  factors  by which the basic vectors may
be multiplied. To get a convenient method of handling this question
a new mathematical notation is required, which will be given in the
next section.

15. The S function
Our work in 6 10 led us to consider quantities involving a certain

kind of infinity.  To get a precise  notation for dealing with these
infinities, we introduce a quantity S(x) depending on a Parameter x
satisfying the conditions

Co

s
S(x) dz  = 1

-*  S(x) = 0 for x # 0.

To get a picture of S(x), take a function  of the real variable x which
vanishes everywhere  except inside a small domain,  of length E say,
surrounding the origin x = 0, and which is so large inside this domain
that its integral over this domain is unity. The exact shape of the
function inside this domain  does not matter, provided there are no
unnecessarily wild variations (for example provided the function
is always of Order  4).  Then in the limit E -+ 0 this function  will go
over into S(X).

S(x) is not a function  of x according to the usual mathematical
definition of a function,  which requires a function to have a definite
value for each  Point  in its domain,  but is something more general,
which we may call  an ‘improper function’ to show up its differente
from a function  defined by the usual definition. Thus S(x) is not a
quantity which tan  be generally used in mathematical analysis  like
an ordinary function,  but its use must be confined to certain simple
types of expression for ‘which it is obvious that no inconsistency
tan  arise.
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The most important proper@  of S(X) is exemplified by the follow-
ing equation, w

s f(4w9 dx = f(O), (3)
-03

where f(x) is any continuous function of x. We tan easily see the
validity of this equation ficom  the above picture of S(x). The left-
hand side of (3) tan depend only on the values of f(x) very close
to the origin, so that we may replace f(x) by its value at the origin,
f(O), without essential error. Equation (3) then follows from the
first of equations (2). By making a Change of origin in (3),  we tan
deduce the formula co

s fWW4  dx = f(a), (4)
-Co

where a is any real number. Thus the process of multiplying  a function
of x by S(x-a) and integrating over all x is equivalent to the process of
substituting a for x. This general result holds also if the function of x is
not a numerical  one, but is a vector  or linear Operator depending on x.

The range of integration in (3) and (4) need not be from --Co to CO,
but may be over any domain  surrounding the critical Point  at which
the S function does not vanish. In future the Limits  of integration
will usually be omitted in such equations, it being understood that
the domain  of integration is a suitable one.

Equations (3) and (4) Show  that, although an improper function
does not itself have a weh-defined value, when it occurs as a factor
in an integrand the integral has a well-defined  value. In quantum
theory, whenever an improper function appears, it will be something
which  is to be used ultimately in an integrand. Therefore it should be
possible to rewrite the theory in a form in which  the improper func-
tions appear all through only in integrands. One could then eliminate
the improper functions  altogether. The use of improper functions
thus does not involve any lack  of rigour in the theory, but is merely
a convenient notation, enabling us to express in a concise form
certain relations which  we could, if necessary, rewrite in a form not
involving improper functions,  but only in a cumbersome way which
would tend to obscure  the argument.

An alternative way of defining  the S function is as the differential
coefficient E’(X) of the function E(X) given by

E(X) = 0 (x < 0)
= 1 (x > 0). 1 (5)
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We may verify that  this is equivalent to the previous definition by
substituting E’(X) for S(x) in the left-hand side of (3) and integrating
by Parts.  We find, for g,  and g, two positive numbers,

1
ulf~x)Ef~x) ax = [ft4+J)]8’up-  p’f’wt4 ax

-92 -02

= fkd- P m  fJx

-f(O),  O
in agreement with (3). The 8 function appears whenever one differen-
tiates a discontinuous function.

There are a number of elemrntary equations which one tan write
down about  6 functions. These equations are essentially rules of
manipulation for algebraic  werk  involving 6 functions. The meaning
of any of these equations is that its two sides give equivalent results
as factors in an integrand.

-

Examples of such equations are

q-x)  = S(x) (6)xS(x)  = 0, (7)S(ax) = dS(x) (a > O), (8)S(x242)  = B~-l{w-J)+s(x+~))  @ > o>, (9)
s s(a-x) ax s+b) = s+b), (10)

f(x)S(x-a)  = f(a)S(x-a). (11)
Equation (6),  which merely states that S(x) is an even function of its
variable x is trivial. To verify (7) take any continuous function of
x, f(x). Then

s
f(x)xS(x)  ax = 0,

from (3). Thus x 6(x)  as a factor in an integrand is equivalent to
Zero,  which is just the meaning of (7). (8) and (9) may be verified
by similar elementary arguments. To verify (10) take any continuous
function of a,  f(a). Then

ff(q d”J s(a-x) ax S(X-b)  = f s(x-b) axJf(a)adqa-x)

= 1 S(x-b) dxf(x) = 1 f(a) da S(a-4).

Thus the two sides of (10) are equivalent as factors in an integrand
with a as variable of integration. It may be shown in the same way
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that they are equivalent also as factors  in an integrand with b as
variable of integration, so that equation (10) is justified from either
of these Points  of view. Equation (11) is also easily justified, with
the help of (4),  from two Points  of view.

Equation (10) would be given by an application of (4) with
f(x) = S(x-b). We have here an illustration of the fact  that we may
often use an improper function as though it were an ordinary con-
tinuous function, without getting a wrong result.

Equation (7) Shows  that, whenever one divides both sides of an
equation by a variable x which  tan take on the value Zero,  one
should add on to one side an arbitrary multiple of S(x), i.e. from an
equation A - B (12)

one cannot  infer A/x = Bfx,

but only Alx = B/x+c SW, (13)
where c is unknown.

As an illustration of work with the S function, we may consider the
differentiation of log x. The usual formula

d-&logx  = 1
X

(14)

requires examination for the neighbourhood of x = 0. In Order  to
make the reciprocal function l/x  well defined in the neighbourhood
of x = 0 (in the sense of an improper function) we must impose  on
it an extra condition, such as that ite integral from -E to E vanishes.
With this extra condition,  the integral of the right-hand side of (14)
from -E to E vanishes, while that of the left-hand side of (14) equals
log (- l), so that (14) is not a correct  equation. To correct it, we must
remember that, taking principal values, logx has a pure imaginary
term irr  for negative values of x. As x Passes  through the value Zero
this pure imaginary term vanishes discontinuously. The differen-
tiation of this pure imaginary term gives us the result -ins(x),  so
that ( 14) should read

d
zlogx -L&(x). (15)

X

The particular  combination of reciprocal function and S function
appearing in (15) plays an important part in the quantum  theory of
collision  processes  (see 5 50).
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16. Properties of the basic vectors
Using the notation of the 8 function,  we tan  proceed with the theory

of representations. Let us suppose first that we have a Single  observ-
able 4 forming by itself a complete commuting set, the condition  for
this being that there is only one eigenstate of 4 belonging to any
eigenvalue [‘,  and let us set up an orthogonal representation in which
the basic vectors are eigenvectors of e and are written <[‘I,  It’>.

In the case  when the eigenvalues of ‘$ are discrete,  we csn normalize
the basic vectors, and we then have

<w’>  = 0 (4’ # t3>

GT’>  = 1.
These equations tan  be combined into the Single  equation

<cr>  = S@, W-9
where the Symbol  6 with two suffixes, which we shall often use in the
future, has the meaning

srs = 0  w h e n  rfs
= 1 when r = s.

In the case  when the eigenvalues  of t are continuous we cannot
normalize the basic vectors. If we now consider the quantity @‘lt”>
with 4’  fixed and 6” varying, we see from the work connected with
expression (29) of 6 10 that this quantity vanishes for 4” # 8’ and
thet its integral over a range of 6” extending through the value f
is finite, equal to c say. Thus

G’  15”) = c s(&-y”).
From  (30) of 5 10, c is a positive number. It mag  vary with f’,  so
we should write it ~(6’) or c’ for brevity, and thus we have

<kT”> = c’ S(f’-6’). (18)
Alternatively, we. have

&?15”> = C” S(f’--f”), (19)
where c”  is short for c([“),  the right-hand sides of (18) and (19) being
equal on account of (11).

Let us pass to another representation whose basic vectors arc
eigenvectors of e,  the new basic vectors being numerical  multiples of
the previous ones. Calling the new basic vectors (4’”  1,  It’*),  with the
additional label * to distinguish them from the previous ones, we have

(f’“l = W~‘l, 14’“)  = m’>,
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where k’ is short for k(f) and is a number depending on 5’.  We get

(t’*  Ie”*>  = k’~(f’  lf”)  = k’j&  S(,f’-4”)

with the help of (18). This may be written

from (11). By choosing k’ so that its modulus is c’-*,  which  is possible
since c’ is positive, we arrange to have

(f’“l f’*>  = S(&(“). (20)

The lengths of the new basic vectors are now fixed so as to make the
representation as simple as possible. The way these lengths were
fixed is in some respects  analogous to the normalizing of the basic
vectors in the case  of discrete e’,  equation (20) being of the form of
(16) with the 8 function S([‘--6”)  replacing the 6 Symbol  8ee of
equation ( 16). We shall continue to work with the new  representation
and shall  drop the * labels in it to save writing. Thus (20) will now
be written ([‘lf’)  = S([‘-5”). (21)

We tan develop the theory on closely parallel lines for the discrete
and continuous cases.  For the discrete case  we have, using (16),

c  15’>wY’>  =  2 IEY,,l  =  14”>,
5’ i?

the sum being taken over all eigenvalues. This equation holds for
any basic ket jr) and hence,  since the basic kets form a complete set,

This is a useful  equation expressing an important property of the
basic vectors, namely, if je’>  is multiplied  on the right by (6’1 the
resulting linear Operator, summed  for all (‘,  equds  the unit Operator.
Equations (16) and (22) give the fundamental properties of the basic
vectors for the discrete case.

Similarly, for the continuous case  we have, using (21),

/ ~kf)  dff wo = 1 14’) at’ w-rf) = 157 (23)
from (4) applied with  a ket vector  for f(x),  the range of integration
being the range of eigenvalues. This holds for any basic ket 16”)
and hence

s 149 dt’ (~7 = 1. (24)
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This is of the same form as (22) with an integral replacing the sum.
Equations (21) and (24) give the fundamental properties of the basic
vectors for the continuous case.

Equations (22) and (24) enable one to expand any bra or ket in
terms of the basic vectors. For example, we get for the ket IP) in the
discrete case,  by multiplying  (22) on the right by IP),

IP>  = 2 14’>(5’IP>~ (25)
t?

which gives /P) expanded in terms of the 14’)‘s  and Shows  that the
coefficients in the expansion are (5’1 P), which are just the numbers
forming the representative of 1 P). Similarly, in the continuous case,

IP) = j- lt’>  dt’  <W’>, (26)

giving IP) as an integral over the lt’)‘s, with the coefficient in the
integrand again just the representative (6’  1 P) of 1 P), The conjugate
imaginary equations to (25) and (26) would give the bra vector  (P  1
expanded in terms of the basic bras.

Our present mathematical methods enable us in the continuous
case to expand any ket as an integral of eigenkets of 5. If we do not
use the 6 function notation, the expansion of,a general ket will consist
of an integral plus a sum, as in equation (25) of 5 10, but the 6 function
enables us to replace the sum by an integral in which the integrand
consists of terms each  containing a &  function as a factor.  For
example, the eigenket 16”)  may be replaced by an integral of eigen-
kets, as is shown by the second of equations (23).

If (Q 1 is any bra and 1 P) any ket we get, by further  applications
of (22) and (24), KW> = ya5’)(5’IP> (27)
for discrete 6’ and

OW> = j- <&lf> dt’  <W> (28)

for continuous 5’. These equations express the scalar  product of (QI
and 1 P) in terms of their representatives (Q It’) and (6’  1 P). Equa-
tion (27) is just the usual formula for the scalar  product of two
vectors in terms of the coordinates of the vectors, and (28) is the
natura1 modification of this formula for the case  of continuous t’,
with an integral instead of a sum.

The generalization of the foregoing work to the case  when 4‘ has
both discrete and continuous eigenvalues is quite straightforward.
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Using 4’ and 4” to denote discrete eigenvalues and 6’ and 4” to denote
continuous eigenvalues, we have the set of equations

Gw>  = $Tg”> @ll?>  = 0, GT’>  =  w - 4 ” )  (29)

as the generalization of (16) or (21). These equations express that
the basic vectors are all orthogonal, that those belonging to discrete
eigenvalues are normalized and those belonging to continuous eigen-
values have their lengths fixed by the same rule as led to (20). Prom
(29) we tan derive, as the generalization of (22) or (24),

the rsnge of integration being the range of continuous eigenvalues.
With the help of (30),  we get immediately

lP> = c 14’>G?I~)+  1 lt’> dt’  WlP>
4 ’

as the generalization of (26) or (26),  and

a,s  the generalization of (27) or (28).
Let us now pass to the general case  when we have several commuting

observables EI, t2,. . . , & forming a complete commuting set and set up
an orthogonal representation in which  the basic vectors are simul-
taneous eigenvectors of all of them, and a;re  mitten  {&...&  1,  I&..&).
Let us suppose e1,t2,..., & (V < u) have discrete eigenvalues and

4 6 have continuous eigenvalues.w+l,"',  u
Consider the quantity (&..& ~~+I..&j~;..~~ g+,..[t).  Rom the

orthogonality theorem, it must vanish unless each  68 = 6: for
S = v+ l,..,  u. By extending the work connected with expression
(29) of 6 10 to simultaneous eigenvectors of several commuting
observables and extending also the axiom (30),  we find that the
(u-v)-fold integral of this quantity  with respect  to each fi over
a range extending through the value ei is a finite positive number.
Calling this number c’, the ’ denoting that it is a function  of

s;,..,  G,  ka+iv*,  G, we tan  express our results by the equation

<~;..~~~~+,..~~1~;..~~5~+1~.su>  = c’s(~~+,-5~+l)..s(~-~~),  (33)

with one 8 factor on the right-hand side for each  value of s from
V+ 1 to u. We now Change the lengths of our basic vectors so as to

3696.57 F
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make c’ unity, by a procedure similar to that which led to (20). By
a further  use of the orthogonality theorem, we get finally

with a two-suffix 8 Symbol  on the right-hand side for each  4 with
discrete eigenvalues and a 8 function for each  ,$ with continuous
eigenvalues. This is the generalization of (16) or (21) to the case  when
there are several commuting observables in the complete set.

From (34) we tan  derive, as the generalization of (22) or (24)

(35)

the integral being a (u-v)-fold one over all the k”s  with continuous
eigenvalues and the summation being over all the [“s with discrete
eigenvalues. Equations (34) and (35) give the fundamental properfies
of the basic vectors in the present case.  From (35) we tan imme-
diately write down the generalization of (25) or (26) and of (27) or (28).

The case  we have just considered tan  be further  generalized by
allowing some of the 4’s to have both discrete and continuous eigen-
values. The modifications required in the equations are quite straight-
forward, but will not be given here as they are rather cumbersome to
write down in general form-

There are some Problems  in which it is convenient not to make the
cf  of equation (33) equal unity, but to make it equal to some definite
function of the 6”s instead. Calling this function of the f”s p’-l we
then have, instead of (34)

and instead of (35) we get

(37)

p’ is called the weight  function of the representation, p’d,$,+,..d&
being the ‘weight’ attached to a small volume element of the space
of the variables cV+r,..,  &.

The representations we considered previously all had the weight
function unity. The introduction  of a weight function not unity is
entirely a matter of convenience and does not add anything to the
mathematical power of the representation. The basic bras {f;...&*  1
of a representation with the weight function p’  are connected with
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the basic bras  (&..&  1 of the corresponding representation with the
weight function unity by

(&...fu*l  = p’-~(~;...~ul, (38)
as is easily verified. An example  of a useful representation with
non-unit weight function occurs when one has two 5’s which  are
the polar and azimuthal angles 8 and + giving a direction  in three-
dimensional space  and one takes p’ = sin 8’. One then has the elcment
of solid angle sin 8’  dPd+’  occurring in (37).

17. The representation of linear Operators
In 5 14 we saw how to represent ket and bra vectors by ssts  of

numbers. We now have to do the same for linear Operators, in Order
to have a complete scheme for representing all our abstract  quantities
by sets of numbers. The Same basic vectors that wo had in 3 14 tan
be used again for this purpose.

Let us suppose the basic vectors are simultaneous eigenvectors  of
a complete set of commuting observables 41,eZ,...,[U.  If 01  is any
linear Operator, we take a general basic bra (&.&  1 and a general
basic ket jf;...fc)  and form the numbers

{C$..~~~CX~~~*..~~). (39)
These numbers are sufficient  to determine 01  completely, since  in the
first place they determine the ket 01jt;...tc)  (as they provide the
representative of this ket),  and the value of this ket for all the basic
kets 1~~...~~>  determines CX. The numbers (39) are called the repre-
sentative of the linear Operator C Y .  or of the dynamical variable (x. They
are more complicated than the representative of a ket or bra vcctor
in that they involve the Parameters that label two basic vectora
instead of one.

Let us examine the form of these numbers in simple cases.  Take
first  the case  when there is only one t, forming a complete commuting
set by itself, and suppose that it has discrete  eigenvalues 6’. The
representative of 01  is then the discrete  set of numbers (5’ [CX  14”). If
one had to write out these numbers explicitly, the natura1 way of
arranging them would be as a two-dimensional array, thus:

I

G?l4P> <511442> @blP> * l

G21d?> GT2bE2> (4�214k3> � �

<~314~1> (P14t2>  <S3bE3>  * ’ 1 (40)

i

...........

. .� . . . . . . . . .
☺
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where tl,  t2,  t3,.. arc all the eigenvalues of [. Such an array is called
a mutrix  and the numbers are called the elements of the matrix- We
make the convention that the elements must always be arranged SO

that those in the same row refer to the Same basic bra vector and
those in the Same column refer to the same basic ket vector.

An element ([‘[cu~[‘>  fre erring  to two basic vectors with the same
label is called a diagonal  element of the matrix, as all such elements
lie on a diagonal. If we put Q:  equal to unity, we have from (16) all
the diagonal elements equal to unity and all the other elements equal
to Zero. The matrix is then called the unit matrix.

If cx  is real, we have
-_----

<0#‘>  = <5”145’>* (41)
The effect of these conditions on the matrix (40) is to make the
diagonal elements all real and each  of the other elements equal the
conjugate complex of its mirror reflection in the diagonal. The matrix
is then called a Hermitian matrix.

If we put 01  equal to 4, we get for a general element of the matrix

~4’1&?‘> = mw’>  = Q’&$$@. (42)
Thus all the elements not on the diagonal are Zero.  The matrix is
then called a diagonul  matrix. Its diagonal elements are just equal
to the eigenvalues of 5‘.  More generally, if we put a equal to f(f), a
function of 6,  we get

(6’ IM)  lt?‘>  = f@>  Kp@ (43)
and the matrix is again a diagonal matrix.

Let us determine the representative of a product @  of two linear
Operators a and ß in terms of the representatives of the factors.
F’rom  equation (22) with p substituted for er we obtain

~ww’> = G’b  F l5”><~lPlr’>

= G?l~l5”><5”ISlk’>~
f

(44)111
which  gives us the required result. Equation (44) Shows  that the
matrix formed  by the elements (~‘101/3l~) equals the product of the
matrices  formed by the elements (6’  Ia 15”)  and (k’  Iß 1~“)  respectively,
according to the usual mathematical rule for multiplying matrices.
This rule gives for the element in the rth  row and sth column of the
product matrix the sum of the product of each  element in the rth
row of the first factor matrix with the corresponding element in the sth
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column of the second factor matrix. The multiplication  of matrices
is non-commutative, like the multiphcation  of linear Operators.

We tan  summarize our results for the case  when there is only one
t and it has discrete eigenvalues as follows:

(i) Any iinear  operatdr  is represented by a matrix.
(ii) The unit Operator is represented by the unit mutrix.

(iii) A real linear Operator is represented by a Hermitian  rmztrix.
(iv) 6 and functions  of ZJ aye  represented by diagonal matrices.
(v) The matrix  representing the product of two linear Operators is the

product of the matrices representing the two factors.
Let us now consider the case  when there is only one e and it has

continuous eigenvalues. The representative of a is now (~‘/~1~“),  a
function of two variables 6’ and 6” which tan  vary continuously. It
is convenient to cal1 such a function a ‘rnatrix’,  using this word in
a generalized sense, in Order  that we may be able to use the same
terminology for the discrete and continuous cases.  One of these
generalized matrices cannot,  of course, be written out as a two-
dimensional array like an ordinary matrix, since  the number of its
rows and columns is an infinity equal to the number of Points  on a
line, and the number of its elements is an infinity equal to the
number of Points  in an area.

We arrange  our definitions concerning these generalized matrices
so that the rules (i)-(v) which we had above for the discrete aase
hold also for the continuous case.  The unit Operator is represented
by S(t’--f”) and the generalized matrix formed by these elements
we define to be the unit mtrix.  We still have equation (41) as the
condition for 01  to be real and we define the generalized matrix formed
by the elements (6’  ]o~]LJ”>  to be Herrnitian  when it satisfies this
condition.  5 is represented by

(6’ lW> = 6’  W-f’) (46)
aJ-d  f (59 bY <f’lf<f> lt’% = f(f) W-F’), (46)
and the generalized matrices formed by these elements we define to be
diagonal  mutrices. From (1 l), we could equally well have f” and f (t”)
as the coefficients of S([‘-5”) on the right-hand sides of (45) and (46)
respectively. Corresponding to equation (44) we now have, from (24)

<~‘b/W’>  = j <5’14t”‘>  dt”’  @‘l~lt”>, (47)

with an integral instead of a sum, and we define the generalized
matrix formed by the elements on the right-hand side here to be the
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product of the matrices formed by (e’jaJ[“> and (t’J/314”).  With
these definitions we secure complete parallelism between the discrete
and continuous cases  and we have the rules  (i)-(v) holding for both.

The question arises  how a general diagonal matrix is to be defined
in the continuous case,  as so far we have only defined the right-hand
sides of (45) and (46) to be examples of diagonal matrices. One
might be inclined to define as diagonal any matrix whose (f’, f”)
elements all vanish except when t’ differs infinitely little from t”,
but this would not be satisfactory, because  an important property
of diagonal matrices in the discrete case  is that they always commute
with one another and we want this property to hold also in the
continuous case.  In Order  that the matrix formed by the elements
(4’1~  15”) in the continuous case  may commute with that formed by
the elements on the right-hand side of (45) we must have, using the
multiplication  rule (47),

With the help of formula (4), this reduces  to

<4’144”>4”  = 4’w46”> (48)
or (pty)((’  Iw I(“) = 0.

This gives, according to the rule by which  (13) follows from (12))

(&J  1f”) = c’ 6(&-tj”)

where c’ is a number that may depend on f’. Thus (c’  Iw 16”) is of the
form of the right-hand side of (46). For  this reason we de$ne  only
matrices whose elements are of  the  ferm  of  the right-hund side of  (46) to
be diagonal matrices. It is easily verified  that these matrices all
commute with one another. One tan  form other matrices whose
(t’, 4”)  elements all vanish when 5’  differs appreciably from 4” and
have a different form of singularity when 5’ equals 6” [we shall later
introduce the derivative 6’(x) of the 6 function and 6’  (ff -6”) will
then be an example, see $22 equation (lg)],  but these other matrices
are not diagonal according to the definition.

Let us now pass on to the case  when there is only one [ and it has
both discrete and continuous eigenvalues. Using e, t8  to denote
discrete eigenvalues and ff, 5” to denote continuous eigenvalues, we
now have the representative of a consisting of four kinds of quanti-
ties,  (4’jaIF>,  (p]oil~‘>,  ([‘Icx]~),  ([‘lar]4”).  These quantities tan all
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be put together and considered to form a more general kind of matrix
having some discrete rows and columns and also a continuous range
of rows and columns. We define unit matrix, Hermitian matrix,
diagonal matrix, and the product of two matrices also for this more
general kind of matrix so as to make the rules (i)-(v) still hold. The
details are a straightforward generalization of what has gone before
and need not be given explicitly.

Let us now go back to the general case  of several [‘s, kl,  fa,...,  k,,.
The representative of 01, expression (39) may still be looked upon as
forming a matrix, with rows corresponding to different values of
Si,.  . .,  & and columns corresponding to different values of [i,.  ..,  fi.
Unless  all the ,$‘s  have discrete eigenvalues, this matrix will be of the
generalized kind with continuous ranges  of rows and columns. We
again arrange our definitions so that the rules (i)-(v) hold, with rule
(iv) generalized to:

(iv’) Esch  tn,  (rn  = 1, 2,..., u>  and any function of them is repre-
sented by a diagonal matrix.
A diagonal matrix is now defined as one whose general element
(&,..&~w~~~...~~> is of the form

in the case when fl,.., V,$  have discrete eigenvalues and &,+l,  ..,  tU  have
continuous eigenvalues, c’ being any function of the 6”s.  This defini-
tion is the generalization of what we had with one 4‘ and makes
diagonal matrices always commute  with one another. The other
definitions are straightforward and need not be given explicitly.

We now have a linear Operator always represented by a matrix.
The sum of two linear Operators is represented by the sum of the
matrices representing the Operators and this, together with rule (v),
means that the nuztrices are subject  to the same algebraic  relations as
the linear olperators. If any algebraic  equation holds between certain
linear Operators, the same equation must hold between the matrices
representing those Operators.

The scheme of matrices tan  be extended to bring in the repre-
sentatives of ket and bra vectors.  The matrices representing linear
Operators are all Square matrices with the Same number of rows and
columns, and with, in fact,  a one-one correspondence between their
rows and columns. We may look upon the representative of a ket
1 P) as a rrmtrix  with a single wlumn  by setting all the numbers
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(.&...&lP) which form this representative one below the other. The
number of rows in this matrix will be the Same as the number of
rows or columns in the Square matrices representing linear Operators.
Such a Single-column matrix tan be multiplied on the left by a Square
matrix (&...&Icx~~~...~~) pr e resenting a linear Operator, by a rule
similar to that for the multiplication  of two Square matrices. The
product is another Single-column matrix with elements given by

From (35) this is just equal to (~;...&Icx~P),  the. representative of
011  P).  Similarly we may look upon the representative of a bra (Q /
as a matrix with a Single row by setting all the numbers (QI~~...&>
side by side. Such a Single-row matrix may be multiplied on the
right by a Square matrix (~~...&Icx\~~...R),  the product being another
Single-row matrix, which is just the representative of <&Icx.  The
Single-row matrix representing (Q 1 may be multiplied on the right
by the Single-column matrix representing IP), the product being a
matrix with just a Single  element, which is equal to (Q IP). Finally,
the Single-row matrix representing (Q 1 may be multiplied on the left
by the Single-column matrix representing f P), the product being a
Square matrix, which is just the representative of l.P)(Q 1.  In this
way all our abstract Symbols, linear Operators, bra vectors,  and ket
veetors, tan  be represented  by matrices, which are subject  to the
same algebraic  relations as the abstract Symbols themselves.

18. Probability amplitudes
Representations are of great importante  in the physical interpreta-

tion of quantum  mechanics as they provide a convenient method for
obtaining the probabilities of observables having given values. In
$ 12 we obtained the probability of an observable having any speci-
fied value for a given state and in $ 13 we generalized this result
and obtained the probability of a set of commuting observables
simultaneously having specified values for a given state. Let us now
apply this result to a complete set of commuting observables, say the
set of f’s  which we have been dealing with already. According to
formula (51) of 5 13, the probability of each  5,.  having the value 6;
for the state corresponding to the normalized lret vector IX) is
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If the 6’s all have discrete eigenvalues, we tan um (35) with v = U ,
and no integrals, and get

We thus get the simple result that the probahility  of the 6’s kving  the
vulues 6’ is just the Square of the modulus of the appropriate coordinate
of the normalized ket vector corresponding to the stade  concerned.

If the LJ’S do not all have discrete eigenvalues, but if, say, fl,.., &,
have discrete eigenvalues and &,+r  ,.  .  , fU  have continuous eigenvalues,,
then to get something physically significant  we  must obtain the
probability of each  (Jr (r = l,.., v) having a specified value C and each
&  (8 = v+L., U) lying in a specified small range 59  to [:+c@:.  For
this purpose we must replace each  factor Sg8g;  in (50) by a factor xS,
which is that function of the observable &  which is equal to unity
for &  within the range [i to &+dtL  and zero otherwise. Proceeding
as before with the help of (35),  we obtain for this probability

Thus in every case  the probability distribution  of values for the e’~  is
given by the squure of the modulus of the representative  of the norma-
lixed ket vector corresponding to the stute  concerned.

The numbers which form the representative of a normalized ket
(or bra) may for this reason be called probability ampiitudes. The
Square of the modulus of a probability amplitude is an ordinary
probability, or  a probability per unit range for those variables that
have continuous ranges  of values.

We may be interested in a state whose corresponding ket IX) cannot
be normalized. This occurs, for example, if the state is an eigenstate
of some observable belonging to an eigenvalue lying in a range of
eigenvalues . The formula  (51) or  (52) tan  then still be used to give
the relative probability of the 6’s having specified values or having
values lying in specified small ranges,  i.e. it will give correctly the
ratios of the probabilities for different 4”s.  The numbers (&...&lx>
may then be called relative probability amplitudes.
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The representation for which the above results hold is characterized
by the basic vectors being simultaneous eigenvectors of all the f’s.
It may also be characterized by the requirement that each  of the 5’s
shall be represented by a diagonal matrix, this condition being easily
seen to be equivalent to the previous one. The latter characterization
is usually the more convenient one. For brevity, we shall formulate
it as each  of the 6’s ’ being diagonal in the representation’.

Provided the f’s form a complete set of commuting observables,
the representation is completely determined by the characterization,
apart Flom  arbitrary Phase  factors in the basic vectors. Esch basic bra
(ei.. .& 1 may be multiplied by eiy’,  where y’ is any real function of
the variables &...,  &, without changing  any of the conditions which
the representation has to satisfy, i.e. the condition that the E’s  are
diagonal or that the basic vectors are simultaneous eigenvectors of
the 5’8, and the fundamental properties of the basic vectors (34) and
(35). With the basic bras changed  in this way, the representative
(~~..&IP>  of a ket /P) gets multiplied by eir’,  the representative
(& It;...&) of a bra (& 1 gets multiplied by e-iy’  and the representa-
t i v e  (&...&lal~;...~~)  f  ho a ‘near Operator cx  gets multiplied by eflr’--r?
The probabilities or relative probabilities (51), (52) are, of course,
unaltered.

The probabilities that one calculates in practical Problems  in
quantum  mechanics are nearly always obtained from  the squares
of the moduli of probability amplitudes or relative probability ampli-
tudes. Even when one is interested only in the probability of an
incomplete set of commuting observables having specified values, it
is usually necessary  first to make the set a complete one by the
introduction of some extra commuting observables and to obtain
the probability of the complete set having specified values (as the
Square of the modulus of a probability amplitude), and then to sum
or integrate over all possible values of. the extra observables. A
more direct  application of formula (51) of $ 13 is usually nof
practicable.

To introduce a representation in practice
(i) We  look for observables which we would like to have diagonal,

either because  we are interested in their probabilities or for
reasons of mathematical simplicity ;

(ii) We must see that they all commute-a necessary condition
since diagonal matrices  always commute  ; j .
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(iii) We then sec  that they form a complete commuting set, and
if not we add some more commuting observables to them fo
make them into a complete commuting set ;

(iv) We set up an orthogonal representation with this complete
commuting set diagonal.

The representation is then completely determined except for the
arbitrary Phase  factors. For most purposes the arbitrary Phase
factors are unimportant and trivial, so that we may count the
representation as being completely determined by the observables
that are diagonal in it. This fact is already implied in our notation,
since  the only indication  in a representative of the representation to
which it belongs are the letters denoting the observables that are
diagonal.

It may be that we are interested in two representations for the
same dynamical System. Suppose that in one of them the complete
set of commuting observables [i,..., eU are diagonal and the basic
bras are <&...&] and in the other the complete set of commuting
observables T~,.  . . , vw are diagonal and the basic bras  are (q;...&, 1.
A ket 1 P) will now have the two representatives {&...&I  P>  and
<&.&lP>.  If &,..>  &, have discrete eigenvalues and &+l,..,  fU  have
continuous eigenvalues and if Q,. .  , 7% have discrete eigenvalues and
?lx+l,“)  rlw have continuous eigenvalues, we  get from  (35)

and interchanging e’s  and 7’s

These are the transformation equations which give one representative
of IP) in terms of the other. They show that either representative
is expressible linearly in terms of the other, with the quantities

as coefficients. These quantities are called the transformtion  func-
Gons.  Similar equations may be written down to connect  the two
representatives of a bra vector  or  of a linear Operator. The trans-
formation functions  (55) are in every case the means which enable
one to pass fiom  one representative to the other. Esch of the
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transformation functions is the conjugate complex of the other, and
they satisfy the conditions

&, j-s ( ~;..qX;...iQ  dt;+,..dS;  <~;-~lrl;...~W)
1.. v

8= r)irlT"  qzqz6 � l 6(r15+1-rlr+l)..6(rl:o-rlf;) (56)

and the corresponding conditions with 6’s and 17’s interchanged, as
may be verified from (35) and (34) and the corresponding equations
for the 77’s.

Transformation functions are examples of probability amplitudes
or relative probability amplitudes. Let us take the case  when all the
6’s and all the 7’s  have discrete eigenvalues. Then the basic  ket
/qi...&)  is normalized, so that its representative in the f-representa-
tion, {~;...&I~;...&,),  is a probability amplitude for each  set of values
for the [“s. The state to which these probability amplitudes refer,
namely the state corresponding to 1 y;..  .$,,), is characterized by the
condition that a simultaneous measurement of Q,. . .,  Q,,  is certain to
lead to the results &...,&.  Thus I([;...&[$...&,)12  is the proba-
bility of the 5’s  having the values &,...&  for the state for which the
7’s  certainly have the values $...&.  Since

ro;...c.Jq;...&7>12  = rc~~...~Wl~;...~~>I”,
we have the theorem of reciprocity-the probability of the e’s  having
the values [’  for the state for which the r]‘s  certainly huve  the values q’
is equal  to the probability of  the q’s  having the values 7’ for the state for
which the f’s certainly haue  the values 4’.

If all the q’s have discrete eigenvalues and some of the e’s  have
continuous eigenvalues, 1 {Ei..  .eh  1~;.  . . $,J l2 still gives the probability
distribution of values for the 4’s for the state for which the 7)‘s  cer-
tainly have the values 7’. If some of the 7’s have continuous eigen-
values, IT;...&,>  is not normalized and I(~~...&I$...&>I”  then gives
only the relative probability distribution of values for the 4’s for the
state for which the 7’s certainly have the values 7’.

19. Theorems about  functions of observables
We shall illustrate the mathematical value of representations by

using them to prove some theorems.
THEOREM 1. A linear Operator that commutes  with an observable 6

commutes  also with any function  of 4.

The theorem is obviously true when the function is expressible as
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a power seiies. To prove it generally, Iet w be the linear Operator,
so that we have the equation

t+-05 = 0. (57)
Let us introduce a representation in which [ is diagonal. If 6 by
itself does not form a complete commuting set of observables, we must
make it into a complete commuting set by adding  certain observables,
/?  say, to it, and then take  the representation in which t and the ,B’s
are diagonal. (The case  when 6 does form a complete commuting set
by itself tan  be looked upon as a special case  of the preceding one
with the number of /3  variables Zero.)  In this representation equation
(57)  becomes

<!?ß’I!sJ -co&y’ß”>  = 0,

which reduces  to
6$‘(ty  10  llf’ß’)  - (f’ß’ Ii.0 lly’ß’)y  = 0.

In the case  when the eigenvalues of 4 are discrete,  this equation
Shows  that all the matrix elements (f’ß’ lolQ”ß’) of w vanish except
those for which 5’ = f”. In the case  when the eigenvalues of 6 are
continuous it Shows,  like equation (48),  that @ß’  10 Ie”ß”>  is of the
form (fß’ 10 I(“ß’)  = c S(tj’q’),

where c is some function of f’ and the ß”s and p”‘s. In either case
we may say that the matrix representing w ‘is diagonal with respect
to 6’. Iff([)  denotes any function of 6 in accordance with the general
theory of 3 I 1, which requires  f(r) to be deflned  for ,$“’  any eigenvalue
of 5, we tan  deduce in either case

This gives <fß’ If (kl @-Jf(J3  ll”ß”) = 0,
so that f(k) Ce-Wf(f)  = 0

and the theorem is proved.
‘As a special case  of the theorem, we have the result that any

observable that commutes  with an observable E also commutes  with
any function of 4. This result appears as a physical necessity when
we identify, as in $13, the condition of commutability  of two
observables with the condition of compatibility of the correspond-
ing observations. Any Observation that is compatible  with the
measurement of an observable 6 must also be compatible  with the
measurement of f(e), since any measurement of 6 includes in itself
a measurement of f( t).
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THEOREM 2. A linear Operator thut  commutes with euch  of a complete
set  of commuting observables is a function of those observables.

Let o be the linear Operator and el,  c2,.  . . , eU  the complete set of
commuting observables, and set up a representation with these
observables diagonal. Since  w commutes with each  of the 8’5, the
matrix representing it is diagonal with respect to each  of the t’s,
by the argument we had above. This matrix is therefore a diagonal
matrix and is of the form (49),  involving a number c’ which is a
function of the (“s.  It thus represents the function of the [‘s that
c’ is of the e”s, and hence o equals this function of the f’s.

TEEOREM  3. If an observable 6 and a linear Operator g are such that
any linear Operator thut  commutes with f also commutes with g, thea  g
is a ficnction  of 5.

This is the converse  of Theorem 1. To prove it, we use the same
representation with f diagonal as we had for Theorem 1. In the first
place, we see that g must commute with 6 itself, and hence the
representative of g must be diagonal with respect to e, i.e. it must
be of the form

<~‘B’lslf’P”>  = atS’W’)~~g~  or  4S’B’P”)W’-%“),
according to whether 6 has discrete or  continuous eigenvalues. Now
let o be any linear Operator that commutes with f, so that its
representative is of the form

(fjs’ 10 I[“ß”)  = b([‘p’/I”)6pp  or b([‘/3’/3’)8([‘---f”).

By hypothesis w must also commute with g, so that’

<CB  kW -og(~“p’)  = 0. 6-w
If we suppose for definiteness that the Iß’s have discrete eigenvalues,
(58) leads, with the help of the law of matrix multiplication,  to

2 {a(~‘~‘jY”)b(~‘/3”‘/3’)-b(~‘/3’/3”’)cz(~’/3”’/3”)~  = 0, (59)ß”’
the left-hand side of (58) being equal to the left-hand side of (59)
multiplied by $6 or S([‘---6”).  Equation (59) must hold for all
functions  b(f’lg’JQ”).  We tan  deduce that

43v”) = 0 for j3’ # fl”,

a( [‘/3’/3’)  = a( f’/3”/3”).
The first of these results Shows  that the matrix representing g is
diagonal and the second Shows  that a(f’/3’p’) is a function of 4’ only.
We tan now infer that g is that function of f which c@‘jY@‘)  is of [‘,
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so the theorem is proved. The proof is analogous if some of the B’s

have continuous eigenvalues.
Theorems 1 and 3 are still valid if we replace the observable 6 by

any set of commuting observables fl, f2,..,  &.,  only formal changes
being needed in the proofs.

20. Developments in notation
The theory of representations that we have developed provides a

general System  for labelling kets and bras. In a representation in which
the complete set of commuting observables (J1,...  , Eu are diagonal any
ket 1-P)  will have a representative (&...&IP>, or (l’/P)  for brevity.
This representative is a definite  function of the variables [‘,  say $(E’).
The function # then determines the ket IP) completely, so it may be
used to label this ket, to replace the arbitrary label P. In Symbols,
if

we put

We must put IP) equal to l+(4)> and not $(f’)>,  since  it does not
depend on a particular  set of eigenvalues for the [‘s, but only on the
form of the function #.

With f(t) any function of the observables El,...,  CU,  f(f)IP)  will
have as its representative

CE’ If(O  I p> = f(E’J#(S’)  *
Thus according to (60) we put

f(6)  v-3 = lfW(~b
With the help of the second  of equations (60) we now get

f(t)  W(5)> = If(S)sL(f)>* (61)
This is a general result holding for any functions  f and # of the e’s,
and it Shows that the vertical  line 1 is not necessary with the new
notation for a ket-either side of (61)  may be written simply as
f(~)#([)).  Thus the rule for the new notation becomes:-
if (W>  = VW)

1
(62)

we put lP>  = ?m>*
We may further  shorten I(t)) to $>, leaving the variables [ under-
stood, if no ambiguity arises  thereby.

The  bt tw> may be considered as the product of the linear
Operator #([) with a ket  which is denoted simply by ) without a
label. We cal1  the ket ) the standard  ket. Any ket whatever tan be
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expressed as a function of the 6’s multiplied into the Standard ket.
For example, taking ]P) in (62) to be the basic  ket It”>, we find

(63)
in the case  when tl,.., & have discrete  eigenvalues and &,+l,.  .,  4,  have
continuous eigenvalues. The Standard ket is characterized by the
condition  that its representative (5’ 1) is unity over the whole domain
of the variable t’, as may be seen by putting # = 1 in (62).

A further  contraction may be made in the notation, namely to
leave the Symbol  ) for the Standard ket understood. A ket is then
written simply as #(JJ), a function of the observables 5. A function
of the 5’s used in this way to denote a ket is called a wave function.?
The System  of notation provided by wave functions is the one usually
used by most authors for calculations in quantum  mechanics. In
using it one should remember that each  wave function is understood
to have the Standard ket multiplied into it on the right, which
prevents one from multiplying the wave function by any Operator
on the right. Waue  functions tan  be multiplied by Operators only on
the  Zeft.  This distinguishes them from ordinary functions of the Os,
which are Operators and tan  be multiplied by Operators on either the
left or  the right. A wave function is just the representative of a ket
expressed as a function of the observables f,  instead of eigenvalues e’
for those observables. The Square of its modulus gives the proba-
bility (or the relative probability, if it is not normalized) of the &‘s
having specified values,  or lying in specified small  ranges,  for the
corresponding state.

The new notation for bras may be developed in the Same way as
i for kets. A bra (&I whose representative (&[f’) is #‘)  we write
r (~/(fl)l. With this notation the conjugate imaginary to I$(t))  is

(g(e)  1.  Thus the rule that we have used hitherto, that a ket and
its conjugate imaginary bra are both specified by the Same label,
must be extended to read-if  the  labels of a Eet involve cornplex
numbers or cmplex  functions, the lubels of the conjugate irnaginary
bra involve the conjugate cornplex numbers or  functions. As in the
case  of kets we tan  show that (#)lf(k) and (~(@jo)~  are the Same,
so that the vertical  line tan  be omitted. We tan consider (c#)  as
the product of the linear Operator +(f)  into the Standard bra (, which

t The  reason  for this name is that in the early daye of quantum  mechanics all the
examples of these  functions were of the form of waves. The name is not a descriptive
one from the Point  of view of the modern general theory.
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is the conjugate imaginary of the Standard ket ).  We may leave
the Standard bra understood, so that a general bra is written as #),
the conjugate complex of a wave function. The conjugate complex
of a wave function tan  be multiplied by any linear Operator on the
right, but cannot  be multiplied by a linear Operator on the left. We
tan  construct triple products  of the form (f(t)>. Such a triple product
is a number, equal to f(f) summed or  integrated over the whole
domain  of eigenvalues for the E’s,

(64)

in the case  when fr,..,  V,$ have discrete  eigenvalues and &,+l,.  . .,  & have
continuous eigenvalues.

The Standard ket and bra are defined with respect to a representa-
tion. If we carried  through the above work with a different repre-
sentation in which the complete set of commuting observables r) are
diagonal, or  if we merely changed  the Phase factors in the representa-
tion with the 5’s  diagonal, we should get a different Standard ket and
bra. In a piece of work in which more than one Standard ket or bra
appears one must, of course, distinguish them by giving them labels.

A further  development of the notation which is of great  importante
for dealing with complicated dynamical Systems will now be discussed.
Suppose we have a dynamical System  describable in terms of dynami-
cal variables which tan  all be divided into two Sets, set A and set B
say, such that any  member of set A commutes  with any member of
set B. A general dynamical variable must be expressible as a function
of the A-variables and B-variables together. We may consider
another dynamical System  in which the dynamical variables are the
A-variables only-let us call  it the A-System. Similarly we may
consider a third dynamical  System  in which the dynamical variables
are the B-variables only-the B-System. The original System  tan
then be looked upon as a combination of the A-System  and the
B-System  in accordance with the mathematical scheme given below.

Let us take any ket Ia> for the A-System  and any ket Jb} for the
B-System. We assume that they have a product Ia) [b) for which
the commutative and distributive axioms of multiplication  hold, i.e.

lW> = P>W,
+4%>+d%>)I~) = Cl 1%) I~)+%l%)  Ib>,
I~OECl  l~l)+%lb2  = Cl l~M,>+c,j~> Ibn>,

3595.67 Q
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the c’s being numbers. We tan give a meaning to any A-variable
operating on the product ja) Ib) by assuming that it operates only
on the Ia) factor and commutes with the Ib> factor, and similarly
we tan give a meaning to any B-variable operafing on this product
by assumiug that it operates only on the Ib) factor and commutes
with the ja) factor. (This makes every A-variable commute  with
every B-variable.) Thus any dynamical variable of the original
System  tan  operate on the product Icc) Ib), so this product tan be
looked upon as a ket for the original System, and may then be
written lab),  the two labels a and b being sufficient  to specify it.
In this way we get the fundamental equations

Im> = Ib> Ia>  = lW* (65)
The multiplication  here is of quite a different kind from  any that

occurs earlier in the theory. The ket vectors Ia) and Ib) are in two
different vector spaces and their product is in a third vector space,
which may be called the product of the two previous vector spaces.
The number of dimensions of the product space is equal  to the
product of the number of dimensions of each  of the factor spaces.
A general ket vector of the product space is not of the form (654,  but
is a sum or integral of kets of this form.

Let us take a representation for the A-System  in which a complete
set of commuting observables fA of the A-System  are diagonal. We
shall  then have the basic  bras (62 1 for the A-System. Similarly,  taking
a representation for the B-System  with the observables tB diagonal,
we shall  have the basic  bras (&l  for the B-System. The products

will then provide the basic  bras for a representation for the original
System,  in which representation the tA’s  and the fB’s will be diagonal.
The fd’s  and tB’s  will together form a complete set of commuting
observables for the original System. From (65)  and (66)  we get

Kl la><&?lb> =f <4a tilab>, (67)
showing  that the representative of jab)  equals the product of the
representatives of Ia) and of Jb) in their respective representations.

We tan  introduce the Standard ket, )a say, for the A-System,
with  respect  to the representation with the fA’s diagonal, and also
the Standard ket )B for the B-System, with respect  to the repre-
sentation with the &‘s  diagonal. Their product )a >* is then the



§ 20 DEVELOPMENTS IN NOTATION 8 3

Standard ket for the original System,  with respect to the representa-
tion with the fB’s and tB’s  diagonal. Any ket for the original System
may be expressed as (68)

It may be that in a certain calculation we wish to use a particular
representation for the B-System, say the above representation with
the eB’s  diagonal, but do not wish to introduce any particular
representation for the A-System. It would then be convenient to
use the Standard ket )* for the B-System  and no Standard ket for
the A-System. Under  these circumstances we could write any ket
for the original System  as

I&3&3~ w
in which ItB)  is a ket for the A-System  and is also a function of the
fB’s,  i.e. it is a ket for the A-System  for each  set of values for the
fB’s-in  fact (69) equals (68) if we take

We may leave the Standard ket )B in (69) understood, and then we
have the general ket for the original System  appearing as IeB>,  a ket
for the A-System  and a wave function in the variables tB of the
B-System. Examples of this notation will be used in 5s 66 and 79.

The above work tan be immediately extended to a dynamical
System  describable in terms of dynamical variables which tan  be
divided into three or more sets A, 23, C,... such that any member of
one set commutes  with any member of another. Equation (65) gets
generalized to la)lb) Ic)...  = pc...>,
the factors on the left being kets for the component Systems and
the ket on the right being a ket for the original System. Equations
(66),  (67),  and (68) get generalized to many factors in a similar way.



IV

THE QUANTUM CONDITIONS

2 1. Poisson brackets
OUR work so far has consisted in setting up a general mathematical
scheme connecfing states and observables in quantum  mechanics.
One of the dominant features of this scheme is that observables, and
dynamical variables in general, appear in it as quantities which do
not obey the commutative law of multiplication. It now becomes
necessary for us to obtain equations to replace the commutative law
of multiplication, equations that will tell us the value of [r] - 76 when
6 and 7 are any two observables or dynamical variables. Only when
such equations are known shall we have a complete scheme of
mechanics with which to replace classical mechanics. These new
equations are called quantum  conditions or comnutation  relations.

The Problem  of finding quantum  conditions is not of such a general
Character as those we have been concerned with up to the present. It
is instead a special Problem  which presents itself with each  particular
dynamical System  one is called upon to study. There is, however,
a fairly general method of obtaining quantum  conditions, applicable
to a very large class  of dynamical Systems. This is the method of
classical  anulogy  and will form the main theme of the present chapter.
Those dynamical Systems to which this method is not applicable
must be treated individually and special considerations used in each
case.

The value of classical analogy in the development of quantum
mechanics depends on the fact that classical mechanics provides a
valid description of dynamical Systems under  certain conditions,
when the particles  and bodies composing the Systems are sufficiently
massive for the disturbance accompanying an Observation to be
negligible. Classical mechanics must therefore be a limiting case  of
quantum  mechanics. We should thus expect to find that important
concepts in classical mechanics correspond to important concepts in
quantum  mechanics, and, from an understanding of the general
nature of the analogy between classical and quantum  mechanics, we
may hope to get laws and theorems  in quantum  mechanics appearing
as simple generalizations of well-known results in classical mechanics;
in particular  we may hope to get the quantum  conditions appearing

.
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as a simple generalization of the classical law that all dynttmical
variables commute.

Let us take a dynamical System  composed of a number of particles
in interaction.  As independent dynamical variables for dealing with
the System  we may use the Cartesian coordinates of all the particles
and the corresponding Cartesian components of velocity of the par-
ticles. It is, however, more convenient to work with the momentum
components instead of the velocity components. Let us cal1  the
coordinates qr, r going from 1 to three times the number of particles,
and the corresponding momentum  components 13,. The q’s and p’s
are called canonical coordinates and momenta.

The method of Lagrange’s equations of motion involves introdu-
cing  coordinates qp  and momenta pT in a more general way, applicable
also for a System not composed of particles (e.g. a System  containing
rigid bodies). These more general q’s and JYS are also called canonical
coordinates and momenta. Any dynamical variable is expressible in
terms of a set of canonical coordinates and momenta.

An important concept in general dynamical theory is the Poisson
Bracket. Any two dynamical variables u and v have a P.B. (Poisson
Bracket)  which  we shall denote by [u, v],  defined by

(1)

u and v being regarded as functions  of a set of canonical coordinates
and momenta q,, and 13,. for the purpose of the differentiations.  The
right-hand side of (1) is independent of which  set of canonical
coordinates and momenta are used, this being a consequence of the
general definition of canonical coordinates and momenta, so the
P.B. [u,v] is well defined.

The main properties of P.B.‘s,  which  follow,  at once from their
definition (l), are

[u, v] = -p, Ul, (2)

[w-j  = 0, (3)
where c is a number (which  may be considered as a special  case  of a
dynamical variable),
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= [Ul, “]u2+u,[u,,  v],
[u,  VI 021 = [u,  v11v2++4 v21. (5)

Also the identity

1%  [v, w]]+[v,  [w, u]]+[w,  [u, v]] = 0 (6)
is easily verified. Equations (4) express that the P.B. [u, v] involves
u and v linearly,  while equations (5) correspond to the ordinary rules
for differentiating a product.

Let us try to introduce a quantum  P.B. which shall be the analogue
of the classical one. We assume  the quantum  P.B. to satisfy all the
conditions (2) to (6),  it being now necessary that the Order  of the
factors u1  and uz in the first of equations (5) should be preserved
throughout the equation, as in the way we have here w-ritten it, and
similarly for the v1 and v2 in the second of equations (5). These condi-
tions are already sticient to determine the form of the quantum
P.B. uniquely, as may  be seen from the following argument. We tan
evaluate the P.B. [ul us, v1 v2] in two different ways, since  we tan  use
either of the two formulas (5) first,  thus,

[Ul U2Y Vl %l  = ~~~~211~21~2+~~~~2~~~~21
= (C%  “11~2+“1c%  v21>u2+%@2> “11~2+~&27  van
= [~~>~,P2~2+~,[~,~~21~2+~,[~2~~,1~2+~,~,~~2~~21

and

[Ul UZ> VI  v21 = Cu1  Uz9  v&2+4?%  u29  v21
= [UD  %]u,v,+~,lu,~ ~&a+“1[%  “zluz+%  %[U27  v21.

Equating these two results, we obtain

[Ul,  ~&J27J2-~2U,)  = mv-~I  d-u,>  v,l*
Since  this condition holds with ui and v1 quite  independent of u2  and
vuZ, we must hsve Ul  V~--V~  Ul  = i?i[ul,  VJ,

u2v2-42u2 = iqu,,  v21,
where fi must not depend on u1  and vl, nor on u, and v2, and also
must commute  with (u,v, -vl  u,). It follows that fi must be simply
a number. We  Want  the P.B. of two real  variables to be real, as in
the classical  theory, which requires, from the work at the top of p. 28,
that 6 aha11  be a real number when introduced, as here, with the
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coefficient i. We arc thus led to the following definition  for the
quuntum P.B. [u, v]  of any two variables u and v,

UV-vu = iqu,  q, (7)

in which 6 is it new universal constant. It has the dimensions of
action.  In Order  that the theory may agree with experiment, we
must take $5  equal to h/%,  where h is the universal constant that
was introduced by Planck,  known as Planck’s constant. It is easily
verifled that the quantum  P.B. satisfies all the conditions (2),  (3),  (4),

W , and  (6).
The Problem  of finding quantum  conditions now reduces  to the

Problem  of determining P.B.‘s in quantum  mechanics. The strong
analogy between the quantum  P.B. defined by (7) and the classical
P.B. defined by (1) leads us to make the assumption that the quantum
P.B.‘s,  or at any rate the simpler ones of them, have the same values
as the corresponding classical P.B.‘s.  The simplest P.B.‘s  arc  those
involving the canonical coordinates and momenta themselves and
have the following values in the classical theory:

We therefore assume that the corresponding quantum  P.B.‘s also
have the values given by (8). By eliminating the quantum  P.B.‘s
with the help of (7),  we obtain the equations

Qr Qs-%Pr = 0, PirPs-%Pr = 09
%%-%4r  = =LY 1 (9)

which are the fundurnental  quuntum conditions. They Show  us where
the lack  of commutability among the canonical coordinates and
momenta lies. They also provide us with a basis for calculating com-
mutation relations between other dynamical variables. For  instance,
if [ and r) are any two functions  of the q’s and p’s expressible as
power series, we may express [y--$ or [f, 71,  by repeated applica-
tions of the laws (2),  (3), (4), and (6),  in terms of the elementary
P.B.‘s given in (8) and so evaluate it. The result is often, in simple
cases,  the same as the classical result, or departs from the classical
result omy through requiring a special  Order  for factors in a product,
this Order  being, of course, unimportant in the classical theory. Even
when f and 7 are more general functions  of the q’s and p’s not ex-
pressible as power series, equations (9) are still sufficient  to fix the
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value of [T--$, as will become clear  from the following werk.
Equ&ions  (9) thus give the Solution of the Problem  of finding the
quantum  conditions, for all those dynamical Systems which have a
classical analogue and which are describable in terms of canonical
coordinates and momenta. This does not include all possible Systems
in quantum  mechanics.

Equations  (‘7) and (9) provide the foundation for the analogy
between  quantum  mechanics and classical mechanics. They show
fhat classical mechunics may be regarded us  the limiting  case of quuntum
mechunics when 5 tends to Zero. A P.B. in quantum  mechanics is a
purely algebraic  notion and is thus a rather more fundamental con-
cept than a classical P.B., which tan  be defined only with reference to
a set of canonical coordinates and momenta. For this reason canonical
coordinates and momenta are of less importante in quantum  mechanics
than in classical mechanics; in fact,  we may have a System  in quan-
turn mechanics for which canonical coordinates and momenta do
not exist and we  tan  still give a meaning to P.B.‘s. Such a System
would be one without a classical analogue and we should not be able
to obtain its quantum  conditions by the method here described.

From equations (9) we see that two variables with different suffixes
r and s always commute.  It follows that any function of qT and p,,
will commute  with any function  of qS and p,  when s differs from  r.
Different values of r correspond to different degrees of freedom of the
dynamical System, so we get the result that dynumical  variables
referring  to different degrees of freedom commute. This law, as we have
derived it from (9), is proved only for dynamical Systems with
classical analogues, but we assume it to hold generally. In this way
we tan  make a Start on the Problem  of finding quantum  conditions.
for dynamical Systems for which canonical coordinates and momenta
do not exist, provided we tan give a meaning to different degrees of
freedom, as we may be able to do with the help of physical insight.

We tan  now see the physical meaning of the division, which was
discussed in the preceding section,  of the dynamical variables into
Sets,  any member of one set commuting with any member of another.
Esch set corresponds to certain degrees of freedom, or possibly just
one degree of freedom. The division may correspond to the physical
process of resolving the dynamical System  into its constituent Parts,
each  constituent being capable  of existing by itself as a physical
System,  and the various constituents having to be brought into
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interaction  with one another to produce the original System. Alterna-
tively the division  may be merely a mathematical procedure of
resolving the dynamical System  into degrees of freedom which  cannot
be separated physically, e.,CT.  the System  consisting of a particle with
internal  structure may be divided into the degrees of freedom describ-
ing the motion of the centre  of the particle and those describing the
internal structure.

22. Schrödinger’s representation
Let us consider a dynamical System  with n degrees of freedom

having a classical analogue, and thus describable in terms of canonical
coordinates and momenta q,.,p, (r  = 1,2,...  , n). We assume that the
coordinates qr are all observables  and haue continuous ranges  of eigen-
values,  these assumptions being reasonable from the physical signifi-
cance  of the q’s. Let us set up a representation with the q’s diagonal.
The question arises  whether the q’s form a complete commuting set
for this dynamical System. It seems pretty obvious from inspection
that they do. We shall here assume that they do, and the assumption
will be justified later (see top of p. 92). With the q’s forming a
complete commuting set, the representation is fixed except for the
arbitrary Phase  factors  in it.

Let us consider first the case  of n = 1, so that there  is only one q
and ~p,  satisfying qp-pq = in.
Any ket may be written in the Standard ket notation #(q)>.  From  it
we tan  form another ket d#/dq), whose representative is the deriva-
tive of the original one. This new ket is a linear function  of the
original one and is thus the result of some linear Operator applied to
the original one. Calling this linear Operator d/dq,  we have

gn = -“,. (11)
Equation (11) holding for all functions  $ defines the linear Operator
dldq.  We have

g->-o. (12)

Let us treat the linear Operator d/dq  according to the general theory
8f linear Operators of 6 7. We should then be able to apply it to a bra
(4(q),  the product ($d/dq  being defined, according to (3) of $ 7, by
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for all functions #Q). Taking representatives,  we get

0  22

(14)

We tan transform the right-hand side by partial integration and get

provided the contributions  from the limits of integration vanish.
This gives d

<+dqw  = -9,

showing that <Q,=  -(!g$- . (16)  ;- d
:- JI .

T’hus  dldq  operating to the left on the conjugate complex of a wave ’ ’
function has the meaning of minus differentiation  with respect  to q.

The validity of this result depends on our being able to make the
passage f?om  (14) to (15),  which  requires that we must restritt our-
selves to bras and kets corresponding to wave functions that satisfy
suitable  boundary conditions. The conditions usually holding in
practice are that they vanish at the boundaries. (Somewhat more
general conditions will be given in the  next section.) These conditions
do not limit  the physical applicability of the theory, but, on the con-
trary, are usually required also on physi4 grounds. For example,
if q is a Cartesian coordinate of a particle,  its eigenvalues run from
-00 to CO,  and the physical requirement that the particle  has Zero
probability of being at infinity leads to the condition that the wave
function vanishes for q = &co.

’ ,fri  .1 :’ The conjugate complex of fhe linear Operator d/dq  tan  be evaluated
1;. by noting that the conjugate imaginary of d/dq. #) or d#/dq) is
i ’ 04Jf&, or - (4 d/dq  from (16). Thus the conjugate complex of d/dq

.1s  -dfdq, so d/dq is a pure imginary  linear Operator.
To get the representative of djdq  we note that, from an application

of formula (63) of 5 20,
k”>  = WPfD, (17)

and hence (19)
The representative of dldq involves the derivative of the 8 function.
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Let us werk  out the comrnutation relation connecting d/dq  with q.
We have d

&jM (20)

Since  this holds for any ket #>, we  have

a a
dsq-"4i=  l*

Comparing this result with ( lO), we see that -% d/dq  satisJies the
same coinmutation  relution  with q thut  p does.

To extend the foregoing work to the case of arbitrary n, we write
the general ket as #(ql...q,)) = #) and introduce the n linear opera-
tors a/aq,  (T  = l,..., n),  which  tan  operate on it in accordance with
the formula

g*,  = $),
T r

corresponding to (11). We have

-&)=Of

(22)

(23)

corresponding to (12). Provided we restritt  ourselves to bras and
kets corresponding to wave functions  satisfying suitable boundary
conditions, these linear Operators tan  operate also on bras, in accor-
dance with the formula

<+$  = -<“, (24)
r r

corresponding to (16). Thus a/aq,  tan  operate to the left on the
conjugate complex of a wave function,  when it has the meaning pf
minus partial differentiation with respect  to q,. We find as before
that each  a/aq,.  is a pure imaginary linear Operator. Corresponding
to (21) we have the commutation  relations

We have further

=2%>
%r %

(26)

showing that
aa aa--=-e*

a!L 4s a%  a%
(27)

Comparing (25) and (27) with (9),  we see that the linear operators
-4 a/aq,  satisfy  the same  commutution  relutions  with the q’s and with
euch other thut  the p’s do.
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It would be possible to take

Pr = -3#ia/aqv (28)
without getting any inconsistency. This possibility enables us to see
that the q’s must form a complete commuting set of observables,
since  it means that any function of the q’s and ~3s  could be taken
to be a function of the q’s and -4 i?/aq’s  and then could not commute
with all the q’s unless it is a function of the q’s only.

The equations (28) do not necessarily hold. But in any case  the
quantities p,+S a/aq,.  each  commute with all the q’s, so each  of them
is a function of the q’s, from Theorem 2 of 5 19. Thus

Pr = -4 var+frw (29)
Since  13, and --ifia/aqr  are both real, J.(q)  must be real. l?or  any
function f of the q’s we have

showing that $-f& = g.
? T r

With the help of (29) we tan now deduce the general formula

PJ-fPr = -ifL af/a!lr* (31)

This formula may be written in P.B. notation

Lf)Prl  = afla% (32)

when it is the same as in the classical theory, as follows from (1).
Multiplying (27) by ( -i6)2 and substituting for ---in  a/aq,.  and -8 a/aqg

their values given by (29),  we get

(Pr-frl(Ps-fs)  = (Ps-f.s)(Pr-fr)?

which reduces, with the help of the quantum  conditionp,p,  = pspr,  to

Prfs+frPs = Psfr+fsPr*

This reduces further,  with the help  of (31),  to

aft31a% = afrla%) (33)

showing that the functions  fr are all of the form

fr = waqr (34)
with F independent of r.  Equation (29) now becomes

Pr = -i%a/ap,+aF/afjr. (35)
We have been working with a representation which is fixed to the

extent that the q’s must be diagonal in it, but which contains arbitrary
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Phase  factors. If the Phase  factors are changed, the Operators a/aq,
get changed. It will now be shown that, by a suitable Change in the
Phase  factors, the function F in (35) tan  be made to vanish, so that
equations (28) are made to hold.

Using Stars to distinguish quantities referring to the new repre-
sentation with the new Phase  factors, we shall have the new basic
bras connected with the previous ones by

<4;4;*  I= eif(q’...qk  / WV
where y’ = y(q’)  is a real function of the q”s.  The new representa-
tive of a ket is eir’ firnes the old one, showing that e%j)*  = #),  SO

(37)
as the connexion between the new Standard ket and the original one.
The new linear Operator (a/aq,)* satisfies, corresponding to (22),

( 1

$ *#)* = $.>* = e-W!$.)

r r t

with the help of (37). Using (22),  this gives

showing that a *
( 1

a
G

= e-iy-eiy

at& '
or, with the help of (SO),

a *
( )ag,=as, r

a +i$. (39)
By choosing y so that ;F  = ny+  a constant, (40)
(35) becomes P r = -iiti(a/aq,)*. (41)
Equation (40)  fixes y except for an arbitrary constant, so the repre-
sentation is fixed except for an arbitrary constant Phase  factor.

In this way we see that a representation tan be set up in which
the q’s a3ne  diagonal and equations (28) hold. This representation is
a very useful one for many Problems. It will be called ScTLröcG~er’s
representution,  as it was the representation in terms of which Schrö-
dinger  gave his original formulation of quantum  mechanics in 1926.
Schrödinger’s representation exists whenever one has canonical q’s
and p’s, and is completely determined by these q’s and p’s except for
an arbitrary constant Phase  factor. It owes its great convenience to
its allowing one to express immediately any algebraic  function of the
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q’s and P’s of the form of a power series in the P’s as an Operator of i
differentiation,  e.g. if f(ql,.  . . , qn, PI,.  . . , Pi,) is such a function,  we have !

f(ql,...,qn,pil,...,pn)  =  fkb..4h  - w a g , , . . . ,  -ifivqn), (42)

provided we preserve the Order  of the factors in a product on substi- ’

tuting the -%a/aq’s  for the p’s.
From (23) and (28), we have

PJ = 0. (43)
Thus the Standard ket in Schrödinger’s representation is characterized :
by the condition that it is a simultaneous eigenket of all the momenta i
belonging to the eigenvalues Zero. Some properties of the basic :
vectors  of Schrödinger’s representation may also be noted. Equation
(22) gives

<q;...q;]$$>  =  (q;...q;l$)  =  %g$Q = -$ <q;...q;1+>.
7 T T r

<d...!Al;
r

= gAq;...qiA,
r

Hence (44)

(q;...q;/p,  = 4; <q;...q;1.
T

w
Similarly, equation (24) leads to

23. The momentum representation
Let us take a System  with one degree of freedom, describable in

terms of a q and p with the eigenvalues of q running from --CO  to CO, i
and let us take an eigenket Ip’)  of p. Its representative in the Sehrö- 1
dinger  representation, (q’ Ip’),  satisfies

P’WP’)  = WIPIP’> = -i$$  (qf IP’),

with the help of (45)  applied to the case  of one degree of freedom.
The solutioy,  of Chis  differential equation for (q’ Ip’)  is

(q’lp’) = cf eWd/fi, (47

where c’ = c@‘)  is independent of q’, but may involve p’.

The representative (q’ Ip’)  does not satisfy the boundary conditions
of vanishing  at q’ = -&o.  This gives rise to some d.ifEculty,  which



.’ § 23 THE MOMENT~J~%  REPRESENTATION 9 5

Shows  itself up most  arectly  in the fGluro  of the orthogonality
theorem. If we take a seoond eigenket  I@‘>  of p with representative

(*'@">  = &fP"b/n,

belonging to a different eigenvalue  p”, we shA.l have

This i&egrd  does not converge  according to the USU~~ definition of
convergence. To br-g  tho theory  into Order,  we adopt a new defini-
tion of convergence of an integral  whose domain extendsto inanity,
analogous  to the Cesaro  definition  of the sum of an infuaife  series.
With this  new  de-finition,  an integral whose value to the upper hmif
q’ is of the form cosq’ or sin&, with a a real number nof Zero,  is
counted as Zero  when q’ ten&  to infinity, i.e. we take the mean value
of the oscillations, and simiIa;rly for the lower limit of q’ tending to
minus Unity.  Th&  makes the right-hand side of (48) vanish for
13” # p’,  so that the ortlmgonality  theorem is restored. Also it makes
the right-hand sides of (13)  and (14)  equal when (4 and $) arc eigen-
vectors of p, so that eigenvectors  of p become permissible vectors to
use with the Operator d/dq. Thus the boundary conditions that the
representative of a permissible  bra or ket has to satisfy become
extended to allow the representrttive to oscillate like cos&  or sinaq’M
as q’ goes to inCn.ity  or minus in6nity.

For p” very close to p’, the right-hand side of (48) involves a 6
function. To evaluate it, we need the formula

00

s eze dx = 27r6(a) (49)
-03

for real a, which may be proved as follows. The formula evidently
holds for a different from Zero, as both sides are then Zero.  Further
we have, for any continuous functionf(a),

Jf(a) du Jo  eim  dx = sm&)  da 2a-l sinag = 2$(0)
-cQ -l7 -Co

in the Limit  when g tends  to infinity.  A more complicated argument
Shows  that we get the Same result if instead of the limits  g and -g
we put g, and -g2, and then  Iet g1 and g, tend to infCty  in Werent
ways  (not too tidely  different). This Shows  the equivalence of both
sides of’ (49) as facfors in an “fegrand,  which  proves the formula.
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With the help of (49),  (48) becomes

(p’lp”) = i-2 ZnS[(p’-p’)/li] = 7cM  h S(p’-pl)

= IC’IVL S(p’-p’). (50)

We hsve obtained an eigenket  of p belonging to any real eigenvalue
p’, its representative being given by (47).  Any ket IX) tan be ex-
panded in terms of these eigenkets of p, since  its representative
(@IX>  tan  be expanded in terms of the representatives (47) by
Fourier analysis. It follows that the momentum  p is an observable,
in agreement with the experimental result that momenta tan be
observed.

A symmetry now appears between 4 and p. Esch of them is an
observable with eigenvalues extending from --CO  to CO,  and the
commutation  relation connecting q and p, equation (lO),  remains
invariant if we interchange q and p and write -i for i. We have set
up a representation in which q is diagonal and p = -ihd/dq.  It
follows from the symmetry that we tan  also set up a representation
in which p is diagonal and

q = &d/dp, (51)

the Operator d/dp  being defined by a procedure similar to that used
for d/dq.  This representation will be called the momentum  representa-
tion. It is less useful than the previous Schrödinger representation
because,  while the Schrödinger representation enables one to express
as an Operator of differentiation any function  of q and p that is a
power series in p, the momentum  representation enables one so to
express any function of q and p that is a power series in q, and the
important quantities in dynamics  are almost  always power series in
p but are often not power series in q.  All the Same the momentum
representation is of value for certain Problems  (see $ 50).

Let us calculate the transformation function  (q’ 1~‘)  connecting the
two representations. The basic  kets jp’)  of the momentum  representa-
tion are eigenkets of p and their Schrödinger representatives (q’lp’)
are given by (47) with the coefficients c’ suitably Chosen. The Phase
factors of these basic  kets must be Chosen  so as to make (51) hold.
The easiest way to bring  in this condition is to use the symmetry
between q and p referred to above, according to which (q’ jp’) must
go over into (p’[q’) if we interchange q’ and p’  and write -4 for i.
Now {q’lp’)  is equal to the right-hand side of (47) and (p’  Iq’)  to the
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conjugate complex expression, and hence  c’ must be independent of
$. Thus c’ is just a number c. Further,  we must have

CP IP”) = ~@‘--l-0,

which Shows, on comparison with (50),  that Ic  1 = h-4.  We  tan choose
the arbitrary constant Phase  factor in either representation so as to
make c = h-+, and we then get

(q’ Ip’) = h-@-fd/fi

for the transformation function.
W2)

The foregoing work may easily be generalized to a System  with
n degrees of freedom, describable in terms of n p’s and $8,  with the
eigenvalues of each  q running from --CO  to 00.  Esch 13 will then be
an observable with eigenvalues running from -CO to co, and there
will be symmetry between the set of q’s and the set of p’s, the
commutation  relations remaining invariant if we interchange  each  q,,
with the corresponding p,.  and write 4 for i. A momentum  repre-
sentation tan  be set up in which the @s are diagonal and esch

4T = iha/app. W)
The transformation function connecting it with the Schrödinger
representation will be given by the product of the transformation
functions  for each  degree of freedom separately, as is shown by
formula (67) of $20, and will thus be

<s;qB...snlP;~z..*Pn>  = cel13;>caaI~~>.g.<q~l~~)
= h-n12ezo3;qz;+p;qef...~p~q~l~, (54)  .

24. Heisenberg’s principle of uncertainty
For a System  with one degree of freedom, the Schrödinger and the

momentum  representatives of a ket IX> are connected by

(pf IX)  = h-h  OD  e-fq’p’l~  dq’ (q’lx},
s-03

(a’lX> = h-k  * &‘P’lfi  &p’ (p’IX>.
f-CO 1

w

These formulas have an elementary significance. They show that
either of I the representatives is. given, apart from numerical  coeficients,
by the am(plitudes  of the Pourier components of tke~other. _

It is interesting to apply (55) to a ket whose Schrödinger repre-
sentative consists of what is called a wave packet.  This is a function

3995.57 H
j.d>
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whose value is very small everywhere outside a certain domain,  of
width Aq’ say, and inside this domain is approximately periodic with
a definite frequency.t If a Fourier analysis  is made of such a wave
packet, the amplitude of all the Fourier components will be small,
except those in the neighbourhood of the definite frequency. The
components whose amplitudes are not small will fill up a frequencyt
band whose width is of the Order  l/Aq’, since two components whose
frequencies differ by this amount, if in Phase  in the middle of the
domain  Aq’, will be just out of Phase  and interfering at the ends of
this domain. Now in the first of equations (55) the variable
(2~)~3’/fi  = p’/h  plays the part of frequency. Thus with (q’ IX) of the
form of a wave packet, the function (p’/X),  being composed of the
amplitudes of the Fourier components of the wave packet, will be
small everywhere in the p’-space outside a certain domain  of width
AP’ = h/Aq’.

Let us now apply the physical interpretation of the Square of the
modulus of the representative of a ket as a probability. We find that
our wave packet represents a state for which  a measurement of q is
almost  certain to lead to a result lying in a domain of width Aq’ and
a measurement of p is almost  certain to lead to a result lying in a
domain  of width Ap’. We may say that for this state q has a definite
value with an error of Order  Aq’  and p has a definite value with an
error  of Order  Ap’. The product of these two errors  is

Aq’Ap’ = h. (56)
Thus the more accurately one of the variables q,p has a definite
value, the less accurately the other has a definite value. For a System
with several degrees of freedom, equation (56) applies to each  degree
of freedom separately.

Equation (56)  is known as Heisenberg’s Principle of Uncertainty.
It Shows  clearly the limitations in the possibility of simultaneously
assigning numerical  values, for any particular  state, to two non-
commuting observables, when those observables are a canonical co-
Ordinate and momentum, and provides a plain illustration  of how
observations in quantum  mechanics may be incompatible.  It also
Shows  how classical mechanics, which  assumes that numerical  values
tan be assigned simultaneously to all observables, may be a valid
approximation when h tan be considered as small enough fo be

t Frequency  here  means  reciprocal  of wave-length.
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negligible. Equation  (56) holds only in the most favourable case,
which occurs when the representative of the state is of the form of a
wave packet.  Other forms of representative would lead to a Aq’ and
AP’ whose product is larger than h.

Heisenberg’s principle of uncertainty Shows that, in the limit  when
either q or  p is completely determined, the other is completely
undetermined. This result tan  also be obtained directly from the
transformation function  (q’lp’).  According to the end of 6 18,

l(q’1P’>12da’  * P  P  t1s ro or  ional to the probability of q having a value in
the small range from q’ to q’+dq’ for the state for which p certainly
has the value p’, and from (52) this probability is independent of q’
for 8, given &’  . Thus if p certainly has a definite value p’,  all values
of q are equally probable. Similarly, if q certainly has a definite value
q’, all values of p are equally probable.

It is evident physically that a state for which all values of q are
equally probable, or one for which all values ofp are equally probable,
cannot  be attained in practice, in the first case  because  of limitations
of size and in the second  because  of limitations of energy. Thus an
eigenstate of p or  an eigenstate of q cannot  be attained in practice.
The argument at the end of $ 12 already showed that such eigenstates
are unattainable, because  of the infinite precision that would be
needed to set them up, and we now have another argument  leading
to the same conclusion.

25. Displacement Operators
We get a new insight into the meaning of some of the quantum  con-

ditions by making a study of displacement Operators. These appear
in the theory when we take into consideration that the scheme of
relations between states and dynamical variables given in Chapter 11
is essentially aphysical scheme, so that if certain states and dynamical
variables are connected by some relation, on our displacing them all
in a definite way (for example, displacing them all through a distance
6x in the direction  of the x-axis of Cartesian coordinates), the new
states and dynamical variables would have to be connected by the
same relation.

The displacement of a state or  observable is a perfectly definite
process physically. Thus to displace a state or observable through a
distance 6x in the direction  of the x-axis,  we should merely have  to
displace all the apparatus used in preparing  the state, or all the
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apparatus required to measure the observable, through the distance
Sx in the direction of the x-axis, and the displaced apparatus would
define the displaced state or observable. The displacement of a
dynamical variable must be just as definite as the displacement of
an observable, because of the close  mathematical connexion between
dynamical variables and observables. A displaced state or dynamical
variable is uniquely  determined by the undisplaced state or dynami-
cal variable together with the direction and magnitude of the dis-
placement .

The displacement of a ket vector is not such a definite thing though.
If we take a certain ket vector, it will represent a certain state and we
may displace this state and get a perfectly definite new state, but this
new  state will not determine our displaced ket, but only the direction
of our displaced ket. We help to fix our displaced ket by requiring
that it shall have the same length as the undisplaced ket, but even
then it is not completely determined, but tan  still be multiplied by
an arbitrary Phase  factor.  One would think at first sight that each
ket one displaces would have a different arbitrary Phase  factor,
but with the help of the following argument, we see that it must be
the same for them all. We make use of the law that Superposition
relationships between states remain invariant under  the displace-
ment. A Superposition relationship between states is expressed
mathematically by a linear equation between the kets corresponding
to those states, for example

IJ9 = q4+c,IJo, (57)
where c1 and c2 are numbers, and the invariance  of the Superposition
relationship requires that the displaced states correspond to kets
with the same linear equation between them-in our example they
would correspond to IRd),  [Ad),  IB&!> say, satisfying

pd) = C~~Ad)+c,(Bd). (58)
We take these kets to be our displaced kets, rather than these kets
multiplied by arbitrary independent Phase  factors,  which  latter
kets would satisfy a linear equation with different coefficients cl, c2.
The only arbitrariness now left  in the  displaced kets is that of a Single
arbitrary Phase  factor  to be multiplied into all of them.

4

The condition that linear equations between the kets remain in-
variant under  the displacement and that an equation such as (58)
holds whenever the corresponding (57) holds,  means that the dis-
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placed kets are linear functions  of the  undisplaced kets and thus each
displaced ket /Pd)  is the result of some linear Operator applied to the
corresponding undisplaced ket IP). In Symbols,

VW = DIP), (69)
where D is a linear Operator independent of 1 P> and depending only
on the displacement. The arbitrary Phase  factor by which all the
displaced kets may be multiplied results in D being undetermined
to the extent of an arbitrary numerical  factor of modulus unity.

With the displacement of kets made definite in the above manner
and the displacement of bras, of course, made equally definite,
through their being the conjugate imaginaries of the kets,  we tan
now assert that any symbolic equation between kets, bras, and
dynamical variables must remain invariant under  the displacement
of every Symbol  occurring in it, on account of such an equation
having some physical significance which will not get changed  by the
displacement .

Take as an exarnple  the equation

<QIP) = c>
c being a number. Then we must have

(QdlPd)  = c = {QIP).

From  the conjugate imaginary of (59) with Q instead of P,

(Qdl = (QID.
Hence  (60) gives (QJ~W'>  = (QIP>*
Since  this holds for arbitrary (Q] and ) P>,  we must have

BD=1,

giving us a general condition  which D has to satisfy.
Take as a second example the equation

VIP) = IR),

(60)

(61)

(62)

where v is any dynamical variable. Then, using vd to denote the
displaced dynamical variable, we must have

v,/Pd)  = /Rd).

With the help of (89) we get

v,IPd)  = DIR) = DvjP)  = DvD-lIPd).

Since  1 Pd) tan be any ket, we must have

Vd = DvD-‘, (63)
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which Shows  that the linear Operator D determines the displacement
of dynamical variables as weh  as that of kets and bras. Note that
the arbitrary numerical factor of modulus unity in D does not affect
vd, and also it does not affect the validity of (62).

Let us now pass to an infinitesimal displacement, i.e. taking the
displacement through the distance Sx in the direction of the x-axis,
let us make 8x + 0. From physical continuity we should expect
a displaced  ket IPd) to tend to the original 1 P) and we may further
expect the limit

firn  Jpd)-1’) = lim  D-1 Ip)
6x-+o SX Gx-+o  sx

to exist. This requires that the limit

~~o’D- 1 )/Sx (64)
shall exist. This limit is a linear Operator which we shall cal1  the
dislplacement  Operator for the x-direction and denote by dz.  The
arbitrary numerical factor eiy  with y real which we may multiply
into D must be made to tend to unity as Sx --+ 0 and then introduces
an arbitrariness in d,, namely, dx may be replaced by

hm (Deir-- l)/Sx  =
6X+O

hm (D- l+iy)/Sx  = d,+ia,,
6x+0

where a, is the limit of r/Sx. Thus dz contains an arbitrary additive
pure imaginary number.

For Sx small D  =  I+Sxd,. (65)  -
Substituting this into (62), we get

(l+Sxd,)(l+Sxd,)  = 1,
which reduces,  with neglect of Sx2,  to

Sx(ci,+d,)  = 0.
Thus dz is a pure imaginary linear Operator. Substituting (65)  into
(63)  we get, with neglect of Sx2  again,

vd =  (l+Sxdx)v(l-Sxd,) =  v+Sx(d,v-v dJ, (66)
showing that lim (w,-w)/Sx = .d,v-vd,.

6X-+O
(67)  -

We may describe any dynamical System  in terms of the following
dynamical variables: the Cartesian coordinates x, y, x of the centre  of
mass of the System, the components ~~,p~,p~  of the total momentum
of the System,  which are the canonical momenta conjugate to x, y, z
respectively, and any dynamical variables needed for describing
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internal degrees of freedom of the System. If we  suppose a piece
of apparatus which has been set up to measure x, to be displaced a
distance 6x in the direction of the x-axis, it will measure x-6x,  hence

x& = x-6x.

Comparing this with (66) for v = x, we obtain

d,x-xd,  = -1. (68)
This is the quantum  condition connecting  d,  with x. From similar
arguments we find that y,  x, pZ, p2/,  13, and the internal dynamical vari-
ables, which are unaffected by the displacement, must commute with
d,.  Comparing these results with (Q),  we see that i& dz satisfies just
the same quantum  conditions as 23,.  Their differente, pZ-i7idZ,
commutes  with all the dynamical variables and must therefore be a
number. This number, which is necessarily real since p5 and S dz are
both real, may be made Zero by a suitable choice of the arbitrary,
pure imaginary number that tan be added to dZ.  We then have the
result Pz = ins,, (69)
or the  x-component of the total momentum  of the system  is i!i times the
disphcement  Operator d,.

This is a fundamental result, which gives a new significance to
displacement Operators. There is a corresponding result, of course,
also for the y and x displacement Operators d,  and da. The quantum
conditions which state that (ps,  pu and ps commute with each  other
are now seen to be connected with  the fact  that displacements in
different directions  are commutable  operations.

26. Unitary transformations
Let  U  be any linear Operator that has a reciprocal U-l and con-

sider the equation a* = uau-1, (‘0)
cx  being an arbitrary linear Operator. This equation may be regarded
as expressing a transformation from any linear Operator CII  to a
corresponding linear Operator a*, and as such it has rather remarkable
properties. In the first place  it should be noted that each  a* has the
same eigenvalues as the corresponding a; since, if a’ is any eigenvalue
of 01  and Ia’)  is an eigenket belonging to it, we have

and hence
cx*u[a.‘)  = UaU-Wla’)  = UaIa’)  = Cx’UId},
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showing that Ul&) is an eigenket of CX*  belonging to the same eigen-
value 01’,  and similarly any eigenvalue of CY*  may be shown to be also
an eigenvalue of CL. Z’urther,  if we take several a’s  that are connected
by algebraic equations and transform them all according to (‘70),  the
corresponding c11*‘s  will be connected by the same algebraic equations.
This result follows from the fact that the fundamental algebraic pro-
cesses  of addition and multiplication  are left invariant by the trans-
formation (YO),  as is shown by the following equations :

(al+a&*  = u(cxl+aJu-l = ucYlu-l+ua2  u-1 = af+cg,
(a1 aJ” = Uap, u-1 = Uctl u-wcL2 u-1 = c+g.

Let us now see what condition would be imposed on U by the
requirement that any real (Y’  transforms into a real 01*.  Equation
(70) may be written a*u  = Ua. (71)
Taking the oonjugate complex of both sides in accordance with
(5) of Q 8 we find, if ~11  and CX*  are both real,

üa*  = aü. (72)
Equation (71) gives us üa*u  = im,

and equation (72) gives us

ÜCXJ  = am.

Hence üua = aüu.

Thus ÜU commutes  with any real linear Operator and therefore also
with any linear Operator whatever, since  any linear Operator tan  be
expressed as one real one plus i times another. Hence ÜU is a
number. It is obviously real, its conjugate complex according to (5)
of $ 8 being the Same as itself, and further  it must be a positive
number, since for any ket [P),  (P 1 ÜU 1 P) is positive as well as
<P 1 P). We tan  suppose it to be unity without any loss of generality
in the transformation (70). We then have

UV-= 1. (73)
Equation (73) is equivalent to any of the following

u = ü-1, ü = u-1, u -q -1  = 1. (74)
A matrix or linear Operator 27  that satisfies (7 3) and (74) is said

to be unitury and a transformation (70) with unitary U is called a
unitary transformation. A unitary transformation transforms real
linear Operators into real linear Operators and leaves invariant any
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algebraic equation between linear Operators. It may be considered
as applying also to kets  and bras, in accordance with the equations

ly*)  = Ul0 (Pl = (Plü - (Pp-l, (‘5)
and then it leaves invariant any algebraic equation between linear
Operators, kets, and bras. It transforms eigenvectors  of 01  into eigen-
vectors  of a *. From this one tan easily deduce that it transforms an
observable into an observable and that it leaves invariant any func-
tional relation between observables  based on the general definition
of 8 function given in 0 11.

The inverse  of a unitary transformation is also a unitary trans-
formation, since from (74),  if U  is unitary, U-l  is also unitary.
Further,  if two unitary transformations are applied in succession,
the result is a third unitary transformation, as may be verified in
the following way.  Let the two unitary transformations be (70) and

a+ = va*v-1.
The connexion between 011’  and 01  is then

,+ = vu~u-lv-l
= (VU)a( VU)-1 (76)

from (42) of 3 11. Now V U is unitary since
- -

vuvu = uvvu = üu  = 1,
and hence  (76) is a unitary transformation.

The transformation given in the preceding section from undisplaced
to displaced quantities is an example of a unitary transformation, as
is shown by equations (62),  (63),  corresponding to squations (73),
(70),  and equations (59),  61), corresponding to equations (75).

In classical mechanics one tan  make a transformation from the
canonical coordinates and momenta qT,pr  (r  = l,.., n) to a new set of
variables &!,  &!  (r = 1,.  .  , n) satisfying the same P.B. relations as the
q’s and ~‘8,  i.e. equations (8) of 6 21 with q*‘s  and p*‘s replacing the
q’s  andp’s, and tan express all dynamical variables in terms of the q*‘s
and p*‘s. The q*‘s  and ~8’s are then also called canonical coordinates
and momenta  and the transformation is called a contact transforma-
tion. One tan easily verify that the P.B. of any two dynamical
variables u and v is correctly given by formula (1) of $21 with q*‘s  and
P*‘S instead of q’s  and ~‘5,  so that the P.B. relationship is invariant
under  a contact transformation. This results in the new canonical
coordinates  and momenta being on the same footing as the original
ones  for mmy purposes of general dynamical theory, even though the
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new coordinates &!  may not be a set of Lagrangian coordinates but
may be functions  of the Lagrangian coordinates and velocities.

It will now be shown that, for a quantum  dynamical System  that
has a classical analogue, unitary transformations in the quantum  theory
are the analogue of contact transformations  in the classical theory.
Unitary transformations are more general than contact transforma-
tions, since the former  tan  be applied to Systems in quantum
mechanics that have no classical analogue, but for those Systems in
quantum  mechanics which are describable in terms of canonical
coordinates and momenta, the analogy between the two kinds of
transformation holds. To establish it, we note that a unitary trans-
formation applied to the quantum  variables q,.,pr gives new variables
qF,pF  satisfying the same P.B. relations, since the P.B. relations are
equivalent to the algebraic relations (9) of 0 2 1 and algebraic relations
are left invariant by a unitary transformation. Conversely, any real
variables q:,pz  satisfying the P.&  relations for canonical coordinates
and momenta are connected with the q,.,pr by a unitary transforma-
tion, as is shown by ths following argument.

We use the Schrödinger representation, and write the basic  ket
jq;...qk>  as I@>  for brevity. Since  we are assuming that the qz,pF
satisfy the P.B. relations for canonical coordinates and momenta,
we tan  set up a Schrödinger representation referring to them, with
the qz diagonal and each  pf equal to -;fi a/i?qF.  The basic  kets in
this second Schrödinger representation will be jqf’...qz’), which we
write jq*‘>  for brevity. Now introduce the linear Operator 77  defined by

GI”  I W’) = W”‘-q’), (77)
where S(Q*‘- q’) is short for

6(q”‘-q’)  = s(q~‘-q;)s(q~‘-q;)...8(q$-q;). (78)
The conjugate complex of (77) is

(q’  I ü kl*‘)  = qq*‘-q’),
and hence-j-

(q’ 1 ü u Iq”)  = 1 <q’ 1 ü lq*‘> 4” <q*’  I 77 Ia”>

= s(q*’
s

-q’) dq*’  S(q*‘-q”)

so that
= 6(q’-q”),

üU=l.

t We  use  the notation of a Single  integral sign and dq*’ to denote  an integral over
all the variables q:‘,  qz’,...,  qz’. This  abbreviation will be used also in future  work.
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Thus U  is a unitary Operator. We have further

<!l*‘l!lwlo  = !$+‘~(Q”‘--Q’)
and GI* I k 14’)  = G*‘-!?‘%
The right-hand sides of these two equations are equal on account of
the property of the 8 function  (11) of 6 15, and hence

4v.J  = Q*
or q; = uq,  U-l.

Again, from (45) and (46),
(q*‘lp~ulq’>  = -ih&qq*~-q’).

T

(q*’  1 Up,lq’)  = i?i$-$ a(q*‘--q’).
9.

The right-hand sides of these two equations are obviously equal, and

PW= UPr
or p: = upr U-l.

Thus all the conditions for a unitary transformation are verified.
We get an infinitesimal unitary transformation by taking U  in (70)

to differ by an infinitesimal from unity. Put

U = 1+id,

where E is infinitesimal, so that its Square tan be neglected. Then

U-1 = l-kp.
The  unit,ary  condition  (73) or (74) requires that J’ shall  be real. The
transformation equation (70) now takes the form

which  gives

a*  = (1 +kF)cx( 1 -id),

a*--01 = ie(Pa-d). (79)
It may be w-ritten in P.B. notation

CL*--01 = &[cx,F]. . (80)
If 01  is a canonical coordinate or momentum, this is formallythe Same
as a classical infinitesimal contact transformation.
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THE EQUATIONS OB’  MOTION

27. Schrödinger’s  form for the equations of motion
OUR work fror-n 0 5 onwards has all been concerned with one instant
of time. It gave the general scheme of relations between states and
dynamical variables for a dynamical System  at one instant of time.
To get a complete theory of dynamics  we must consider also the
connexion between different instants of time. When one makes an
Observation on the dynamical System, the state of the System  gets
changed  in an unpredictable way, but in between observations
causality applies, in quantum  mechanics as in classical mechanics,
and the System  is governed by equations of motion which make the
state at one time determine the state at a later time. These equations
of motion we now proceed to study. They will apply so long as the
dynamical System  is left undisturbed by any Observation or similar
pr0cess.t Their general form tan be deduced from the principle of
Superposition of Chapter 1.

Let us consider a particular  state of motion throughout the time
during  which the System  is left undisturbed. We shall have the state
at any time t corresponding to a certain ket which depends on t and
which rnay be written It). If we deal with several of these states of
motion we distinguish them by giving them labels such as A,  and we
then write the ket which corresponds to the state at time t for one
of them ]At). The requirement that the state at one time determines
the state at another time means that ]At,) determines ]At) except
for a numerical  factor.  The principle of Superposition applies to these
states of motion throughout the time during  which the System  is
undisturbed, and means that if we take a Superposition relation
holding for certain states at time t, and giving rise to a linear equation
between the corresponding kets, e.g. the equation

l%)  = G‘%~+m%h
the same superposition relation must hold between the states of
motion throughout the time during  which the System  is undisturbed
and must lead to the Same equation between the kets corresponding

t The preparation  of a state is a prooess of this kind. It often takes the form of
making an Observation and selecting  the System  when the result of the Observation
turns  out to  be a certain  pre-assigned  number.
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to these states at any time t (in the undisturbed time interval), i.e.
the equation 1Rt) = c,l~o+c,Im,

provided the arbitrary numerical factors by which these kets may be
multiplied arc suitably Chosen. It follows that the IPt)‘s  are linear
functions  of the IPt,)‘s and each  IPt)  is the result of some linear
Operator applied to 1 Pt,). In Symbols

/Pt>  = W’t,), (1)
where T is a linear Operator independent of P and depending only
on t (and to).

We now assume that each  1 Pt) has the same length as the corre-
sponding jPto>.  It is not necessarily possible to choose  the arbitrary
numerical factors by which the IPt)‘s may be multiplied so as to
make this so without destroying the linear dependence of the IPt)‘s
on the 1 PtJ’s,  so the new assumption is a physical one and not just
a question of notation. It involves a kind of sharpening of the
principle of Superposition. The arbitrariness in IPt) now becomes
merely a Phase  factor,  which must be independent of P in Order  that
the linear dependence of the 1 Pt)‘s on the 1 Pt,)‘s  may be preserved.
From the condition  that the length of c1  1 Pt>+c2 1 Qt) equals that of
c,lPto>+cz~&to)  for any complex numbers cl,  cg, we tan  deduce that

<QW>  = <QW’t,). (2)
The connexion between the IPt)‘s and 1 Pt,)‘s  is formally similar

to the connexion we’had  in $25 between the displaced and undisplaced
kets, with a process of time displacement instead of the space  displace-
ment of 3 25. Equations (1) and (2) play the part of equations (69)
and (60) of 3 25. We tan develop the consequences of these equations
as in f~ 25 and tan  deduce that T contains an arbitrary numerical
factor of modulus unity and satisfies

FT=l, (3)
corresponding to (62) of 5 25, so T is unitary. We pass to the infinitesi-
mal case  by making t --+ t, and assume from physical continuity that
the limit lim  I Pt>-  I pt,>

t-d0  t-t,

exists. This  limit  is just the derivative of
From (1) it equals

[Pt,)  with respect to t,.
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The limit Operator occurring here is, like (64) of $25, a pure imaginary
linear Operator and is undetermined to the extent of an arbitrary
additive pure imaginary number. Putting this limit Operator multi-
plied by i6 equal to H, or rather H(t,) since it may depend on t,,
equation (4) becomes,  when written for a general  t,

&4po- = lqt>p>.
dt (5)

Equation (5) gives the general law for the Variation with time of
the ket corresponding to the state at any time. It is Schrödinger’s
ferm for the equutions  of motion. It involves just one real linear
Operator H(t),  which must be characteristic of the dynamical System
under  consideration. We assume that H(t) is the total energy of
the system.  There are two justifications for this assumption, (i) the
analogy with classical mechanics, which will be developed in the
next section,  and (ii) we have H(t) appearing as in  firnes an Operator
of displacement in time similar to the Operators of displacement in
the x, y, and x directions  of 0 25, so corresponding to (69) of 8 25
we should have H(t) equal to the total energy, since the theory of
relativity puts energy in the same relation to time as momentum  to
distance.

We assume on physical grounds that the total energy of a System
is always an observable. For  an isolated System  it is a constant,  and
may then be written H. Even when it is not a constant  we aha11  often
write it simply H, leaving its dependence on t understood. If the
energy depends on t, it means the System  is acted on by external
forces.  An action  of this kind is to be distinguished from a distur-
bance caused  by a process of observation, as the former  is compatible
with causality and equations of motion while the latter is not.

We tan get a connexion between H(t) and the T of equation (1)
by substituting for 1 Pt> in (5) its value given by equation (1). This
gives

ifif$  /Pt,)  = H(t)TIPt,).

Since  1 Pt,) may be any ket, we have

ifidTdt  = H(t)T. (6)

Equation (5) is very important forpractical Problems, where it is
usually used in conjunction with a representation. Introducing a
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representation with a complete  set of commuting observables f
diagonal and putting (6’  [Pt) equal to #([‘t),  we have, passing  to the
Standard ket notation,

w = $440>*
Equation (5) now becomes

(7)

Equation (7) is known as Xchrödinger’s wave equation and its solutions
#(&)  arc  time-dependent wave functions.  Esch Solution corresponds to
a state of motion of the System  and the Square of its modulus  gives
the probability of the s’s  having specified values at any time t. For
a System  describable in terms of canonical coordinates and momenta
we may use Schrödinger’s representation and tan  then take H to be
an Operator of differentiation in accordance w-ith (42) of 3 22.

28. Heisenberg’s form for the equations of motion
In the preceding section  we set up a picture of the states of

undisturbed motion by making each  of them correspond to a moving
ket, the state at any time corresponding to the ket at that time. We
shall call  this the Schrödinger  picture. Let us apply to our kets the
unitary transformation which  makes each  ket Ia)  go over into

Ia*)  = T-l ja). (8)
This transformation is of the form given by (75) of 8 26 with T-l for
U,  but it depends on the time t since  T depends on t. It is thus to be
pictured as the application of a continuous motion (consisting of
rotations and uniform deformations) to the whole ket vector  space.
A ket which  is originally fixed becomes a moving one, its motion being
given by (8) with Ia) independent of t. On the other hand, a ket
which  is originally moving to correspond to a state of undisturbed
motion, i.e. in accordance with equation (l), becomes fixed, since  on
substituting /Pt) for Ia> ,in  (8) we get Ia*>  independent of t. Thus
the transformation brings the kets corresponding to stutes of undisturbed
motion. to rest.

The unitary transformation must be applied also to bras and linear
Operators, in Order  that equations between the various quantities may
remain invariant. The transformation applied to bras is given by the
conjugate imaginary of (8) and applied to linear Operators it is given
by (70) of 5 26 with T-l for U, i.e.

a*  = TAT. (9)
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A linear Operator which is originally fixed transforms into a moving
linear Operator in general. Now a dynamical variable corresponds to
a linear Operator which is originally fixed (because  it does not refer
to t at all), so after  the transformation it corresponds to a moving
linear Operator. The transformation thus leads us to a new picture
of the motion, in which the states correspond to fixed vectors and
the dynamical variables to moving linear Operators. We shall cal1
this the Heisenberg picture.

The physical condition of the dynamical System  at any time
involves the relation of the dynamical variables to the state, and
the Change of the physical condition with time may be ascribed
either to a Change in the state, with the dynamical variables kept
fixed, which gives us the Schrödinger picture, or to a Change in the
dynamical variables, with the state kept fixed, which gives us the
Heisenberg picture.

In the Heisenberg picture there are equations of motion for the
dynamical variables. Take a dynamical variable corresponding to
the fixed linear Operator v in the Schrödinger picture. In the Heisen-
berg picture it corresponds to a moving linear Operator, which we
write as vt instead of v*,  to bring out its dependence on t, and which
is given by vt = T-%T

or TV, = vT.

Dserentiating  with respect  to t, we  get

aT av, aT
-p+T-= vz.at

With the help of (6), this gives

. dvtHTq+zfiT  dt = vHT

O P
d v

in-1  =
d t

T-QHT-  T-IHTv,

= v, H,--H,v,,

where H,= T-IHT.

Equation (11) may be written in P.B. notation

(11)
02)
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Equation (11) or (13) Shows  how any dynamical variable varies
with time in the Heisenberg picture and gives us Heisenberg’s ferm
fm the equutions of motion. These equations of motion are determined
by the one linear Operator H,,  which is just the transform of the linear
Operator H occurring in Schrödinger’s form for the equations of
motion and corresponds to the energy in the Heisenberg picture. We
shall cal1 the dynamical variables in the Heisenberg picture, where
they vary with the time, Heisenberg dynamical variables, to distinguish
them from the fixed dynamical variables of the Schrödinger picture,
which we shall cal1 Schrödinger dynamical variables. Esch Heisenberg
dynamical variable is connected with the corresponding Schrödinger
dynamical variable by equation ( 10). Since this connexion is a unitary
transformation, all algebraic  and functional  relationships are the
Same for both kinds of dynamical variable. We have T = 1 for
t = t,, so that viO  = v and any Heisenberg dynamical variable at time
t, equals the corresponding Schrödinger dynamical variable.

Equation (13) tan  be compared with classical mechanics, where we
also have dynamical variables varying with the time. The equations
of motion of classical mechanics tan be written in the Hamiltonian
form

dq,  = aH  dP,  im-=--2dt F,’ dt %r
(14)

where the q’s and p’s are a set of canonical coordinates and momenta
and H is the energy expressed as a function  of them and possibly also
of t. The energy expressed in this way is called the Hamiltonian.
Equations (14)  give, for v any function of the q’s and JI’S that does
not contain the time t explicitly,

dv av da av dp-= -.r -2
d t %T dt +ap?  dt

av aH av al.7= -e-w-
% acp, apr aqr

= [v,HJ, (15)
with the classical definition of a P-B., equation (1) of 3 21. This is
of the Same form as equation (13) in the quantum  theory. We thus
get an analogy between the classical equations of motion in the
Hamiltonian form and the quantum  equations of motion in Heisen-
berg’s form. This analogy provides a justification  for the assumption

3595.67 r
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that the linear operator Ii introduced in the preceding section is the
energy of the System  in quantum  mechanics.

In cbssical mechanics a dynamical System  is defined mathemati-
cally  when the Hamiltonian is  given, i.e. when the energy is given
in terms of a set of canonical coordinates and momenta, as this is
sufficient to fix the equations of motion. In quantum  mechanics a
dynamical System  is defined mathematically when the energy is
given in terms of dynamical variables whose commutation  relations
are known, as this is then sufficient to fix the equations of motion,
in both Schrödinger’s and Heisenberg’s fozm.  We need to have
either H expressed in terms of the Schrödinger dynamical variables
or Ht expressed in terms of the corresponding Heisenberg dynamical
variables, the functional  relationship being, of course, the same in
both cases. We call  the energy expressed in this way the Hamiltonian
of the dynamical System  in quantum  mechanics, to keep up the
analogy with the classical theory.

A System  in quantum  mechanics always has a Hamiltonian, whether
the System  is one that has a classical analogue and is describable in
terms of canonical coordinates and momenta or not. However, 8 the
System  does have a classical analogue, its connexion with classical
mechanics is specially close  and one tan usually  assume that the
Hamiltonian is  the same function of the canonical coordinates and
momenta in the quantum  theory as in the classical theory.? There
would be a dBlculty  in this,  of course, if the classical Hamiltonian
involved a product of factors  whose quantum  analogues do not com-
mute, as one would not know in which  Order  to put these factors in
the quantum  Hamiltonian, but tbis  does not happen for most of the
elementary dynamical Systems  whose study is important for atomic
physics.  In consequence we are able also largely to use the same
language for describing dynamical Systems  in the quantum  theory as
in the classical theory (e.g.  to talk about particles  with given masses
moving  through  given fields  of forte),  and when given a System  in
classical mechanics, tan usually  give a meaning to ‘ the Same’  sysfem
in quantum  mechanics.

Equation ( 13) holds for v,  any function  of the Heisenberg dynamical
variables not involving the time explicitly, i.e. for v any constant

t Thia  sssumption is found  in practice  to be successful  only when appkd with the
dynamical coordktes and momenta referring to a Cartesian system of axes and not
to more  general  curvilinear coordinates.



f 23 HEISENBERG’S FORM FOR THE EQUATIONS OF MOTION 115
“I  ) “l  ” j.t.1  ‘5

linear Operator in the Schrödinger picture. It Shows  that such a ” / I ’
function vt is constant if it commutes with 4 or if w commutes with H.7 > 7 7 - “,/TV:.  7 ‘*
We then have

and we call  vt  or v SL constant of the motion. It is necessary that v shall
commute  with H at all times, which is usually possible only if H is
constant. In this case  we tan  Substitute H for v in (13) and deduce
that Ht  is constant, showing that H itself is then a constant of the
motion. Thus if the Hamiltonian is constant in the Schrödinger
picture, it is also constant in the Heisenberg picture.

For an isolated System,  a System  not acted on by any external
forces,  there are always certain constants of the motion. One of these
is the total energy or Hamiltonian. Others arc  provided by the
displacement theory of 3 25. It is evident physically that the total
energy must remain unchanged if all the dynamical variables are
displaced in a certain way, so equation (63) of $ 25 must hold with
v(f=v= H. Thus D commutes with H and is a constant of the
motion. Passing  to the case  of an infinitesimal displacement, we see
that the displacement Operators dz, d,, and dz  are constants of the
motion and hence,  from (69) of 5 25, the total momentum  is a constant
of the motion. Again, the total energy must remain unchanged if all
the dynamical variables are subjected to a certain rotation. This
leads, as will be shown in 6 35, to the result that the total angular
momentum  is a constant of the motion. The Zuws  of conservation of
energy, momentum, and angular  momentum  hold for an isoluted System
in the Heisenberg picture in quantum  mechunics, as they hold in
clmsical  mechunics.

Two forms for the equations of motion of quantum  mechanics have
now been given. Of these, the Schrödinger form is the more useful
one for practical Problems, as it provides the simpler equations. The
unknowns in Schrödinger’s wave equation are the numbers which
form the representative of a ket vector, while Heisenberg’s equation
of motion for a dynamical variable, if expressed in terms of a repre-
sentation, would involve as unknowns the numbers forming the
representative of the dynamical variable. The latter are far more
numerous and therefore more difficult to evaluate than the Schrö-
dinger  unknowns. Heisenberg’s form for the equations of motion is
of value in providing an immediate analogy with classical mechanics
and enabling one to see how various features of classical theory, such
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laws referred to above, are translated into quan-as the conservation
tumtheory.

29. Stationary states
We shall  here deal with a dynamical System  whose energy is con-

starrt. Certain  specially simple relations hold for this case.  Equation
(6) tan  be integratedt to give

y = ,-ia(t-to)/fi>
with the help of the initial condition that T = 1 for t = t,. This
result substituted into (1) gives

(Pt) = e-iHWol/fi  1 pt,), (16)
which is the integral of Schrödinger’s equation of motion (5),  and
substituted into (10) it gives

vt = eiH(1-tO)/n,e-iH(I-tO)/~ > (17)
which is the integral of Heisenberg’s equation of motion (1 l), Bt being
now equal to H. Thus we have solutions of the equations of motion
in a simple form. However, these solutions are not of much  practical
value, because of the difficulty involved in evaluating the Operator
e-iH(t-lo)lR,  unless H is particularly simple, and for practical purposes
one usually has to fall back on Schrödinger’s wave equation.

Let us consider a state of motion such that at time t,  it is an eigen-
state of the energy. The ket 1 Pt,) corresponding to it at this time
must be an eigenket of H. If H’ is the eigenvalue to which it belongs,
equation ( 16) gives

I PO = e-in'(l-lOYfi 1 pt,),

showing that [Pt) differs from 1 Pt,) only by a Phase  factor. Thus
the state  always remains an eigenstate of the energy, and further,  it
does not vary with the time at all, since the direction of the ket 1 Pt)
does not vary with the time. Such a state is called a stutioruzry state.
The probability for any particular  result of an Observation on it is
independent of the time when the Observation is made. From our
assumption that the energy is an observable, there are sufficient
stationary states for an arbitrary state to be dependent on them.

The time-dependent wave function  z,b(&) representing a stationary
state of energy H’ will vary with time according to the law

#(et)  = ~O(~)e-iR’t~fi, (18)
t The integration  cm be carried  out as though H  wem  an ordinary algebraic

variable instead of a linear Operator, because there  is no quantity that does not
commute  with H  in the work.
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and Schrödinger’s wave equafion (7) for it reduces to
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fwl) = &4l). (19)
This equation merely asserts that the state  represented by & is an
eigenstate  of H. We call  a function lc10 satisfying (19) an eigenfunction
of H, belonging to the eigenvalue H’.

In the Heisenberg picture the stationary states correspond to fixed
eigenvectors of the energy. We tan  set up a representation in which
all the basic vectors are eigenvectors of the energy and so correspond
to stationary states in the Heisenberg picture. We call  such a repre-
sentation a Heisenberg representation. The fkrst  form of quantum
mechanics, discovered by Heisenberg in 1925, was in terms of a
representation of this kind. The energy is diagonal in the representa-
tion. Any other diagonal dynamical variable must commute  with the
energy and is therefore a constant of the motion. The Problem  of
setting up a IIeisenberg representation thus reduces to the Problem
of finding a complete set of commuting observables, each  of which
is a constant of the motion, and then making these observables
diagonal. The energy must be a function of these observables, from .
Theorem 2 of 0 19.  It is sometimes convenient to take the energy
itself as one of them.

Let CY denote the complete set of commuting observables in a
Heisenberg reprssentation, so that the basic vectors are w-ritten (a’l,
1’~“).  The energy is a function of these observables 01, say H = H(a).

I?rom  (17) we get

(~‘lvfld’>  = <&le iH(f-lO)/?i~e-iH(f -fO)/fi 1 a’)

= eW’-W(~-fo)/~( (11’  I2,I a’), (20)
where H’ = H(d) and H” = H(G).  The factor (a’lvl~i”)  on the right-
hand side here is independent of t, being an element of the matrix
representing the fixed linear Operator V.  Formula (20) Shows  how the
Heisenberg matrix elements of any Heisenberg dynamical variable
vary with time, and it makes V~  satisfy the equation of motion (1 l),
as is easily verified. The Variation given by (20) is simply periodic
with the frequency

IH’-H”I/27& = IH’-H”[/h, (21)
depending only on the energy differente of the two stationary states
to which the matrix element refers. This result is closely connected
with the Combination Law of Spectroscopy and Bohr’s Frequency
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Condition, according to which (22) is the frequency of the electro-
magnetic  radiation emitted or absorbed when the System  makes a
transition under  the influence of radiation between the stationary
states CY’  and ~y”,  the eigenvalues of H being Bohr’s energy levels.
These matters will be dealt with  in 5 45.

30. The free particle
The most fundamental and elementary application of quantum

mechanics is to the System  consisting merely of a free particle, or
particle not acted on by any forces.  For dealing with it we use as
dynamical variables the three Cartesian coordinates x, y,  x and their
conjugate momenta pz, py, pz. The Hamiltonian is equal to the
kinetic  energy of the particle, namely

H = g-&  (P:+P;+Pz> (22)

according to Newtoniaa mechanics, m being the mass. This formula
is valid only if the velocity of the particle is small compared with c,
the velocity of light.  For a rapidly moving particle, such as we often
have to deal with in atomic  theory, (22) must be replaced by the
relativistic  formula

H = c(m2c2+p~+p~+p~)*. (23)

For small values of pzc,  py, and pz (23) goes over into (22),  except for
the constant  term mc2 which corresponds to the rest-energy of the
particle in the theory of relativity and which has no influence on the
equations of motion. Formulas (22) and (23) tan be taken over
directly into the quantum  theory, the Square root in (23) being now
understood as the positive Square root defined at the end of $11.
The constant  term mc2  by which (23) differs from (22) for small values
of ps, piy, and pz tan  still have no physical effects,  since the Hamil-
tonian  in the quantum  theory, as introduced in $27, is undefined to
the extent of an arbitrary additive real constant.

We shall here work with the more accurate formula  (23). We shall
first solve the Heisenberg equations of motion. From the quantum
conditions (9) of 3 21, ~~ commutes  with pv and ps, and hence,  from
Theorem 1 of 5 19 extended to a set of commuting observables, pz
commutes  with any function  of pz, py, and ps and therefore with H.
It follows that p, is a constant  of the motion. Similarly p, and pz are
constants of the motion. These results are the same as in the classical
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theory. Again, the equation of motion for a coordinate,  X, say, is,
according to (1 l),

;nx, = i!i$  = x~C~~2C2+P~+p~+pB)~-C(~2~2+p5+p~+p~)fXI~

The right-hand side here tan he evaluated by means of formula
(31) of $22 with  the roles of coordinates and momenta interchanged,
so that it reads

qkf!L  = ifi YPP,’ (24)

f now being any function of the p’s. This gives

Similarly ,

.
xt = g- c@“c”+PH+p;+P~Y C2PZ=-.

2

H

C2Pf/&=--, C2PZ
1

(25)

H
i, = - .

H
The magnitude of the velocity is

v = (*;+s.jf+i~)”  = c”(p;+p$+p,2)“/.H. W)
Equations (25) and (26) are just the same as in the classical theory.

Let us consider a state that is an eigenstatt  of the momenta,
belonging to the eigenvalues p;,  ph, pi. This state must be an eigen-
state of the Hamiltonian, belonging to the eigenvalue

H’ = c(m2C2+~~2+~~2+p~2)f, (27)
and must therefore be a stationary sfate. The possible values for H’
are all numbers from mc2  to 03, as in the classical theory. The wave
function #(xyx)  renresenting this state at any time in Schrödinger’s
representation must satisfy

p&qxyx))  = p~$b(xyx)> = -Ins>,

with similar equations for py  and pz. These equations show that
$(xyz) is of the form

#(xyz)  = (-J&P~~+P;2J+P;~~l~,
(28)

where a is independent of x, y, and x. From  (18) we see now that the
time-dependenf wave function $(xyxt)  is of the form

*(xyzt)  = a, &P~X+P;V+P+H’fi,
(29)

where a,-,  is independent of x, y, x, and t.
The function (29) of x, y, x, and t describes plane waves in space-

time. We see from this example the suitability of the terms  ‘wave
function’ and ‘wave equation’. The frequency of the waves is

v = H’p?, (30)
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their wavelength is

x = h/(p;2+pj2+p;2)~ = h/P’, (31)
P’ being the length of the vector (&.,&,&),  and their motion is in
the direction  specified by the vector (~5,&,pß) with the velocity

Au  = H’JP’  = c2/v’, (32)

v’ being the velocity of the particle corresponding to the momentum
(p&ph,pb)  as given by formula (26). Equations (30),  (31),  and (32)
are easily seen to hold in all Lorentz frames of reference, the expres-
sion on the right-hand side of (29) being, in fact, relativistically
invariant with p:, ph, p:  and H’ as the compononts of a 4-vector.
These properties of relativistic  invariance  led de Broglie, before the
discovery of quantum  mechanics, to Postulate the existente of waves

. of the form (29) associated with the motion of any particle. They
are therefore known  as de Broglie  waves.

In the limiting case  when the mass m is made to tend to Zero,  the
classical velocity of the particle v becomes equal to c and hence,  from
(32),  the wave velocity also becomes c. The waves are then like the
light-waves associated with a Photon,  with the differente that they
contain no reference to the polarization and involve a complex  ex-
ponential instead of sines and cosines. Formulas (30) and (31) are
still valid, connecting the firequency  of the light-waves with the
energy of the Photon  and the wavelength of the light-waves with
the momentum  of the Photon.

For the state represented by (29),  the probability of the particle
being found in any specified small volume when an Observation of its
Position  is made is independent of where the volume is. This provides
an example of Heisenberg’s principle of uncertainty, the state being
one for which  the momentum  is accurately given and for which,  in
consequence, the Position  is completely unknown. Such a state is,
of course, a limiting case  which  never occurs in practice. The states
usually met with in practice. are those represented by wave packets,
which  may be formed by superposing a number of waves of the ty-pe
(29) belonging to slightly different values of (&, p;,  p:), as discussed
in 5 24. The ordinary formula in hydrodynamics  for the velocity of
such a wave packet,  i.e. the group  velocity of the waves, is
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which gives, from (30) and (31)

dH’-=c-
dP’

d”r, (mV+ P’2)h  2g = v’. (34)

This is just the velocity of the particle. The wave pscket  moves in
the Same direction and with the same velocity as the particle moves
in classical mechanics.

31. The motion  of wave  packets
The result just deduced for a free particle is an example of a general

principle. For  any dynamical System  with a classical analogue, a sfate
for which the classical description is valid as an approximation is
represented in quantum  mechanics by a wave packet, all the co-
ordinates and momenta having approximate numerical  values, whose
accuracy is limited by Heisenberg’s principle of uncertainty. Now
Schrödinger’s wave equation fixes how such a wave packet varies with
time, so in Order  that the classical description may remain valid, the
wave packet should remain a wave packet and should move according
to the laws of classical dynamics.  We shall verify that this is so.

We take a dynamical System  having a classical analogue and let
its Hamiltonian be H(q,,pJ  (r 7 1,2,...,  12).  The corresponding classi-
cal dynamical System  will have as Hamiltonian H,(q,,  JI,.)  say, obtained
by putting ordinary algebraic  variables for the 4,.  and p,.  in H(q,,g+)
and making fi -+ 0 if it occurs in H(q,.,p,).  The classical Hamiltonian
HC  is, of course, a real function  of its variables. It is usually a
quadratic  function of the momenta J+,  but not always so, the
relativistic  theory of a free particle being an example where it is not.
The following argument is valid for HC  any algebraic  function  of thep’s.

We suppose that the time-dependent wave function  in Schrö-
dinger’s representation is of the form

+(qt)  = Aeisln, (35)
where A and X are real functions  of the q’s and t which do not vary
very rapidly with their arguments. The wave function  is then  of the
form of waves, with A and S determining the amplitude and Phase
respectively. Schrödinger’s wave equation (7) gives

or = e--islfiH(q,.,  p,)Aeiqfi>. (36)
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Now e--islfi  is evidently a unitary linear Operator and may be used for
U  in equation (70) of 3 26 to give us a unitary transformation. The
@s  remain unchanged  by this transformation, each  J.+, goes over into

e-is+3preislfi = p,+as/ap;,
with the help of (31) of 0 22, and H goes over into

e-isifiH(qr,pT)eiS1fi = H(q,,pr+aS/aqr),

since algebraic  relations are preserved by the transformation. Thus
(36) becomes

(37)

Lct us now suppose  that fi tan  be counted as small  and iet us neglect
terms involving 6 in (37). This involves neglecting the pr’s  that occur
in H in (37),  since each  (P,.  is equivalent to the Operator -ifia/aq,
operating on the functions  of the q’s to the right of it. The surviving
terms give

This is a differential equation which the Phase  function S has to
satisfy. The equation is determined by the classical Hamiltonian
function HC and is known as the Hamilton-Jacobi equution  in classical
dynamics.  It allows S to be real and so Shows  that the assumption
of the wave form (35) does not lead to an inconsistency.

To obtain an equation for A, we must retain the terms in (37)
which are linear in fi and see what they give. A direct  evaluation of
these terms is rather awkward in the case  of a general function H,
and we tan  get the result we require  more easily by first multiplying
both sides of (37) by the bra vector  (Af, where f is an arbitrary real
function of the q’s. This gives

(Af{ i?iaAz-AZ}>  = wq!??&+~A).
The conjugate complex equation is

Subtracting and dividing out by in, we obtain

2<Af $) = CA  [fJ+44.+gp)* (39)
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We now have  to evaluste the P.B.

123

Our assumption that 6 tan  be counted BS  small  enables us to expand

H(!lTY PT+aiw-lr) as a power series in the p’s. The tcrms  of Zero degree
will contribute  nothing to the P.B. The terms of the first degree in
the JI’S give a contribution to the P.B. which tan be evaluated most
easily with the help of the classical formula (1) of § 2 1 (this formula
being valid also in the quantum  theory if zc is independent of the p’s
and v is linear in the p’s). The amount of this contribution is

the notation meaning that we must Substitute a8/aq,  for each  13, in
the function [ ] of the q’s and p’s,  so as to obtain a function of the q’s

only. The ten-s  of higher  degree in the p’s give contributions  to the
P.B. which vanish when K --+ 0. Thus (39) becomes,  with neglect of
terms involving 6,  which is equivalent to the neglect of fi2 in (37),

Now if a(q)  and b(q) arc any two functions  of the q’s, formula
(64) of $20 gives

@(q)W)>  = j- 40 4l’ &tL

and so Wd a;;’->
r

= -($.f@b(q)),
T

(41)

provided a(a) and b(q) satisfy suitable boundary conditions, as dis-
cussed in $9  22 and 23. Hence (40) may be written

Since  this holds for an arbitrary real functionf, we must have

(42)

This is the equation for the amplitude A of the wave function. To
get an understanding of its significance, let us suppose we have a fluid
moving in the space of the variables q, the density of the fluid at any
Point  and time being A2 and its velocity being
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Equation (42) is then just tho equation of conservation for such a
fluid. The motion of the fluid is determined by the function S
satisfying (38),  there being one possible motion for each  Solution
of (38).

For a given S, let us take a Solution of (42) for which at some
definite time the density A2 vanishes everywhere outside a certain
small region. We may suppose this region to move with the fluid,
its velocity  at each  Point  being given by (43),  and then the equation
of conservation (42) will require the density always to vanish outside
the region. There is a limit to how small the region may be, imposed
by the approximation we made in neglecting 6 in (39). This approxi-
mation is valid only provided

or

a s
&$A<29A,

r r

which requires that A shall vary by an appreciable fraction of itself
only through a range of the q’s  in which S varies by many times fi,
i.e. a range consisting of many wavelengths of the wave function (35).
Our Solution is then a wave packet of the type discussed in $ 24 and
remains so for all time.

We thus get a wave function representing a state of motion for
which the coordinates ahd momenta have approximate numerical
values throughout all time. Such a state of motion in quantum
theory corresponds to the states with which classical theory deals.
The motion of our wave  packet  is determined by equations (38) and
(43). From  these we get, defining ps as W/aqg,

where in the last line the p’s are counted as independent of the q’s
before the partial differentiation. Equations (43) and (44) are just
the classical equations of motion in Hamiltonian form and show that
the wave packet  moves according to the laws of classical mechanics.



f  31 THE MOTION OF WAVE PACKETS 125

We see in this way how the classical equations of motion arc derivable
from  the quantum  theory as a limiting case.

By a more accurate Solution of the wave equation one tan show
that the accuracy with which the coordinates and momenta simul-
taneously have numerical  values cannot  remain permanently as
favourable as the Limit  allowed by Heisenberg’s principle of un-
certainty, equation (56) of 3 24, but if it is initially so it will become
less favourable, the wave packet undergoing a spreading.?

32. The action  principlet
Equation (10) Shows  that the Heisenberg dynamical variables at

time  t, vt, are connected with  their values at time t,, vlO,  01:  v, by a
unitary transformation. The Heisenberg variables at time t +&  are
connected with their values at time t by an infinitesimal unitary
transformation, as is shown by the equation of motion (11) or (13),
which gives the connexion between v,+B  and vl of the form of (79) or
(80) of 6 26 with Ht for P and at/&  for E.  The Variation with time of
the Heisenberg dynamical variables may thus be looked upon as the
continuous unfolding of a unitary transformation. In classical
mechanics the dynamical variables at time t +St are connected with
their values at time t by an infinitesimal contact transformation and
the whole motion may be looked upon as the continuous unfolding of a
contact transformation. We have here the mathematical foundation
of the analogy between the classical and quantum  equations of
motion, and tan develop it to bring out the quantum  analogue of all
the main features of the classical theory of dynamics.

Suppose we have a representation in which the complete set of
commuting observables +$ are diagonal, so that a basic  bra is (l’l.
We tan  introduce a second  representation in which the basic  bras are

<f’* I = <Fl T. (45)
The new basic  bras depend on the time t and give us a moving
representation, like a moving System  of axes in an ordinary vector
space  . Comparing (45) with the conjugate imaginary of (8),  we see
that the new basic  vectors are just the transforms in the Heisenberg
picture of the original basic  vectors in the Schrödinger picture, and
hence  they must be connected with the Heisenberg dynamical

See Kennard,  2.  f. Physik;44 (1927),  344; Dsrwin, Proc.  Roy. Sec.  A, 117 (1927),
268.

$ This section  may be omitted by the student  who is not specially  concerned  with
higher  dynamics.
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variables 2~~  in the same way in which the original basic  vectors are
connected with the Schrödinger dynamical variables v. In particular,
each  (4’* 1 must be an eigenvector  of the &‘s belonging to the eigen-
values  5’. It may therefore be written (eil,  with the understanding
that the uumbers 5; are the Same eigenvalues of the &‘s that the (1“‘s
arc of the 6’s.  Rom  (45) we get

<l%“>  = (4’ITIr)9 (46)
showirrg  that the transformation function is just the representative
of !P  in the original representation.

Ufferentiating (45) with respect  to t and using (6),  we get

with  the help of (12). Multiplying on the right by any ket Ia)
independent of t, we get

ifi;<W> = GIH,l~) = f <Stff4G> G <GI@, (47)

i f we tnke for definiteness the case  of continuous eigenvalues for the
6’s.  New  equation (51,  written  in terms of representatives,  reads

Since  (&l.Hl/&  is the same function of the variables 6; and g that
<~‘/111~“>  is  of t’  and f”, equations (47) and (48) are of precisely the
samt  form, with the variables Ei,  ci  in (47) playing the role of the
variables f’  and r in (48) and the function <Si  Ia;)  playing the role
oC  Ute  function ([‘]Pt).  We tan  thus look upon (47) as a form of
Schrödinger’s wave equation, with the function (6;  Ia} of the variables
fi as the wave function. In this way Schrödinger’s wave equation
appears in a new light, us  the condition  on the representative, in the
moqving  representation with the Heisenberg variables & diagonal, of the
$xed ket corresponding to a state in the Heisenberg picture. The function
{& In> owes its Variation with time to its left factor (&/,  in contra-
distinction  to the function (4’ 1 Pt), which owes its Variation with time
to its right factor /Pt>.

If we put In> = It”) in (47),  we get

aw#i>  dt:  <s;orsn>, (49)
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showing that the transformation function (6; 15”)  satisfies Schrö-
dinger’s wave equation. Now &,  = 5, so we must have

the 6 function here being understood as the producf of a number of
factors,  one for each  e-variable, such as occurs for the variables
4 e on the right-hand side of equation (34) of 5 16. Thus theVu+l>"?  u
transformation function (&IE”> is that solution of Schrödinger’s wave
equation for which the 4’s certainly have the values r at time 1,
The Square of its modulus, J (&lr)  J2, is the relative probability of the
t’s having the values 5; at time t > t, if they certainly have the values
5” at time t,. We may write (&iF)  as ([;I&)  and consider it as
depending on t, as well as on t. To get its dependence on t, we take
the conjugate complex of equation (49),  interchange t and t,,  and also
interchange Single  primes and double primes. This gives

The foregoing discussion  of the transformation function {-ölt) is
valid with the t’s any complete set  of commuting observables. The
equations were written down for the case  of the f’s having continuous
eigenvalues, but they would still be valid if any of the 4’s have
discrete  eigenvalues, provided the necessary formal changes  arc  made
in them. Let us now take a dynamical System  having a classical
analogue and let us take the f’s  to be the coordinates 4.  Put

(qi jq”)  = &W (52)

and so define  the function 8 of the variables qi, Q”. This function also
depends explicitly on t. (52) is a Solution of Schrödinger’s wave
equation and, if 6 tan  be counted as small, it tan be handled in thc
Same wy as (35) was. The S of (52) differs from the 8 of (35) on
account of there being no A in (52),  which makes the 8 of (52) com-
plex, but the real part of this S equals the S of (35) and its pure
imaginary part is of the Order  fi. Thus, in the limit 6 -+ 0, the S of
(52) will equal that of (35) and will therefore satisfy, corresponding
fo (3% - (53)
where PA = W%, (54)

and N, is the Hamiltonian of the classical analogue of our quantum
dynamical System. But (52) is also a solution of (51) with q’s for f’s,
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which is the conjugate complex  of Schrödinger’s wave equation in the
variables 4” or &. This Causes S to satisfy also’f

aS/at,  = H,(q;,p;)> (55)
where pp = -ax/aq;. WV

The Solution of the Hamilton-Jacobi equations (53),  (55) is the
action function of classical mechanics for the time interval t, to t,
i.e. it is the time integral of the Lagrangian L,

S = t L(t’) dt’.
s (57)

Thus the 8 de$ned by (52) is the quantuna analogue of the clussical  action
function and equals it in the limit 6 -+ 0. To get the quantum  analogue
of the classical Lagrangian, we pass to the case  of an infinitesimal
time interval by putting t = t,+&  and we then have (q~,+~ljq~O)  as the
analogue of eiQ@lin. F or the sake of the analogy, one should consider
L(t,)  as a function of the coordinates q’ at time t,+6t  and the co-
ordinates q” at time t,,  rather than as a function of the coordinates
and velocities at time t,,  as one usually does.

The principle of least action in classical mechanics says that the
action function (57) remains stationary for small variations of the tra-
jectory of the System  which do not alter the end points, i.e. for small
variations of the q’s at all intermediate times between t, and t with qt,
and qI fixed. Let us see what it corresponds to in the quantum  theory.

Put exp[i/Qt)  dt/%]  = exp(iS(t,,  t,)/h)  = B(t,,  t,),

u

(58)

so that B(t,, ta)  corresponds to <qo1qi,) in the quantum  theory . (We
here allow qiG and qi,  to denote different eigenvalues of qt,  and qtb,  to
save having to introduce a large  number of primes into the analysis.)
Now suppose the time interval t, -+ t to be divided up into a large
number of small time intervals t, -+ t,,  t, + t2,...,  tmml  -+ tm, tm -+ t, by
the introduction  of a sequence of intermediate times t,,  t2,...,  t,.  Then

Jw, 4))  = w, tm)W,,  t,l)-*W,,  t,P(t,,  to>. (59)
The corresponding quantum  equation, which follows from the pro-
perty of basic  vectors (35) of $ 16, is

~4~140)  = jJ..J  M4hJ  &lh<amlqA-1)  &L4a81q~>  &Mlao>~
(60)

.

j- For a more accurate comparison of transformation
theory, sec Van Vleck, Proc.  Nat.  Acc&. 14, 178.

functions with classical
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& being written for & for brevity. At first sight there does not seem
to be any close  correspondence between (59) and (60). We must,
however, analyse the meaning of (59) rather more carefully. We must
regard each  factor  B as a function of the p’s at the two ends of the
time interval to which it refers. This makes the right-hand side of
(59) a function, not only of CJ~ and Q~,,  but also of all the intermediate
Q’S.  Equation (59) is valid only when we Substitute for the inter-
mediate q’s  in its right-hand side their values for the real trajectory,
small variations in which values leave S stationary and therefore also,
from (58),  leave B(t, to)  stationary. It is the process of substituting
these values for the intermediate q’s which corresponds to the inte-
grations  over all values for the intermediate q”s in (60). The quantum
analogue of the action principle is thus absorbed in the composition
law (60) and the classical requirement that the values of the inter-
mediate q’s  shall make S stationary corresponds to the condition
in quantum  mechanics that all values of the intermediate q"s
are important in Proportion to their contribution  to the integral
in (60).

Let us see how (59) tan be a Iimiting case of (60) for fi small. We
must suppose the integrand in (60) to be of the form eiFjfi,  where F is
a function of qh, qi, qi,... ,qA,  qf which remains continuous as fi tends
to Zero, so that the integrand is a rapidly oscillating function when
% is small. The integral of such a rapidly oscillating function will be
extremely small, except for the contribution  arising from a region in
the domain of integration where comparatively large variations in
the q5 produce only very small variations in F. Such a region must
be the neighbourhood of a Point  where P is stationary for small varia-
tions of the qk. Thus the integral in (60) is determined essentially by
the value of the integrand at a Point  where the integrand is stationary
for small variations of the intermediate q"s, and so (60) goes over
into (59).

Equations (54) and (56) express that the variables qi,pf. are con-
neoted with the variables q",p" by a contact transformation and are
one of the Standard forms of writing the equations of a contact trans-
formation. There is an analogous form for writing the equations of a
unitary transformation in quantum  mechanics. We get from (52)) with
the help of (45) of 3 22,

<q;/pJq") = -iTi--${q;~q")  = a~<q;lqrf)* (61)

35 9 5 . 5 7 K
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Similarly, with the help of (46) of 5 22,

From the general definition of functions of commuting observables,
we have (63)
wheref(q,) and g(q) arc  functions of the qt’s and q’s respectively. Let
G(qt,q)  be any function of the qt’s  and q’s consisting of a sum or
integral of terms each  of the form f(qJg(q),  so that all the qt’s  in Q
occur to the left of all the q’s. Such & function we cal1 weil  ordered.
Applying (63) to ea,ch of the terms in G and adding  or integrating,
we get

(ai 1 Wt, d Ia”>  = W;,  a”M;  Id’>-
Now let us suppose each  spti  and ~p,, tan  be expressed as a well-ordered
function of the qt’s  and q’s and write these functions pti(qt,  q),p,(qt,  q).

Putting these functions for G, we get

<at  Ii?-%tlq”>  = Pr&;,  mat  l!f),

<!d IP,lS”>  =  PAd,  a”Kdla”>~
Comparing these equations with (61) and (62) respectively, we see
that

PrikL  a”) =
Wd, Cl”)

eid ’
PrGl”) = -

as(d,  a”)
ap”

r

This means  that

(64)  .

provided the right-hand sides of (64) arc written as well-ordered
functions.

These equations arc  of the Same form &s  (54) and (56), but refer to
the non-commuting quantum  variables qt,q  instead of the ordinary
algebraic  variables qi,  q”.  They show how the conditions for a unitary
transformation between quantum  variables are analogous to the condi-
tions for a contract  transformation between classical variables. The
analogy is not complete,  however, because  the cbssical S must be real
and there is no simple condition corresponding to this for the S of (64).

33. The Gibbs ensemble
In our work up to the present we have been assuming all along that

our dynamical System  at each  instant of time is in a definite  state,
that is to say, its motion is specified as completely and accurately as
is possible without conflicting with the general principles of the theory.
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In the classical theory this would meen,  of course, that all the coordi-
nates and momenta have specified values. Now we may be interested
in a motion which is specified to a lesser extent than this mnximum
possible. The present section  will be devoted to the methods to be
used in such a case.

The procedure in classical mechanics is to introduce what is called
a Gibbs ensembbe,  the idea of which is as follows. We consider all the
dynamical coordinates and momenta as Cartesian coordinates in a
certain space, the phse spute,  whose number of dimensions is twice
the number of degrees of freedom of the System.  Any state of the
System  tan then be represented by a Point  in this space. This Point
will move according to the classical equations of motion (14). Sup-
pose, now, that we  arc  not given that the system  is in a definite state
at any time, but only that it is in one or other of it number of possible
states according to a definite probability law. We should then be
able to represent it by a fluid in the Phase  space, the mass of fluid in
any volume of the phase space being the total probability of the
System  being in any state whose representative Point  lies in that
volume. Esch particle  of the fluid will be moving  according to the
equations of motion (14). If we introduce the density p of the fluid
at any Point,  equal to the probability per unit volume of Phase  space
of the-System  being in the neighbourhood of the corresponding state,
we shall have the equation of conservation

= -[pJq. (65)  ’
This may be considered as the equation of motion for the fluid, since
it determines the density p for all time if p is given initially  as a
function  of t,he  q’s and p’s. It is, apart from the minus sign, of the
same form as the ordinary equation of motion (15) for a dynamical
variable.

The requirement that the total probability of the System  being in
any state shall be unity gives us a normalizing condition for p

SS pdq@ = 1,
the integration being over the whole of Phase  space and the Single
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differential dq or dp being written to denote the product of all the
02~‘s or dp’s. If /3 denotes any function of the dynamical variables,
the average  value of /3  will be

f S 13P  dq** (67)

It makes only a trivial alteration in the theory, but often facilitates
diseussion, if we work with a density p differing from the above one
by a positive constant  factor,  E say, so that we have instead of (66)

SS
p dqdp = k.

With this density we tan  picture the fluid as representing a number
k: of similar dynamical Systems, all following through their motions
independently in the same place,  without any mutual disturbance or
interaction.  The density at any Point  would then be the probable or
average  number of Systems in the neighbourhood of any  state per unit
volume of Phase  space, and expression (67) would give the average
total value of /3  for all the Systems. Such a set of dynamical Systems,
which  is the ensemble introduced by Gibbs, is usually not realizable
in practice, except as a rough approximation, but it forms all the
same a useful theoretical abstraction.

We shall now see that there exists a corresponding density p
in quantum  mechanics, having properties analogous to the above.
It was first introduced by von Neumann. Its existente is rather
surprising in view of the fact that Phase  space has no meaning in
quantum  mechanics, there being no possibility of assigning numerical
values simultaneously to the q’s and p’s.

We consider a dynamical System  which  is at a certain time in one
or other of a number of possible states according to some given
probability law. These states may be either a discrete  set or a con-
tinuous range, or both together. We shall here take for definiteness
the case  of a discrete  set and suppose them labelled by a Parameter m.
Let the normalized ket vectors  corresponding to them be Im) and let
the probability of the System  being in the mth state be Pm.  We then
define the quantum  density p by

P  =  c  Im>en<mI~ (68)m

Let p’ be any eigenvalue of p and Ip’)  an eigenket belonging to this
eigenvalue. Then

c Ia?&4P’)  =  PIP’) =  P’IP’)
m
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so that 2 (P’I~)Pm(~lP’) = PYP’IP’)
m

0r 2 p,le4P’~12  = PYP’IP’).
m

Now Pm,  being a probability, tan never be negative. It follows that
p’ cannot be negative. Thus p has no negative eigenvalues, in analogy
with the fact  that the classical density p is never negative.

Let us now obtain the equation of motion for our quantum  p. In
Schrödinger’s picture the kets and bras in (68)  will vary with the time
in accordance with Schrödinger’s equation (5) and the conjugate
imaginary of this equation, while the Pm’s  will remain constant,  since
the System,  so long as it is left undisturbed, cannot Change over from
a state corresponding to one ket satisfying Schrödinger’s equation to
a state corresponding to another. We thus have

= 2 (HIm~p~~mI~lm)pm~mlH)
m

= HP-pH. (69)
This is the quantum  analogue of the classical equation of motion
(65). Our quantum  p, like the classical one, is determined for all time
if it is given initially.

From the assumption of 3 12, the average  value of any observable
/3  when the System  is in the state m is (m I/llm).  Hence  if the System
is distributed over the various states m according to the probability
law Pm,  the average  value of ,8  will be 2 P,(m  I~jrn}. If we introduce

a representation with a discrete  set ofmbasic  ket vectors 15:)  say, this
equals

3m ’
ersm  EX Iß Im> = (; (5“ Ißlm)Pm<m  14’>

=  p WßPlO =  c <5’IPßIf>9 (70)I 5’

the last step being easily verified with the law of matrix multiplica-
tion, equation (44)  of 3 17.  The expressions (70) are the analogue of
the expression (67)  of the classical theory. Whereas in the classical
theory we have to multiply ß by p and take the integral of the
product over all Phase  space,  in the quantum  theory we have to
multiply ß by p, with the factors  in either Order, and take the
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diagonal sum of the product  in a representation. If the representa-
tion involves a continuous range of basic  vectors lt’),  we  get instead
of (70)

(71)

so that we must carry through a process of ‘integrating along the
diagonal’ instead of summing the diagonal elements. We shall define
(7 1) to be the diagonal sum of /3p  in the continuous case. It tan  easily
be verified, from the properties of transformation functions  (56) of
6 18, that the diagonal sum is the Same for all representations.

From the condition that the Im)‘s  are normalized we get, with
discrete  [“s

F G?IPlS’> =~Clnz)Pm(ml~‘~  = “p, =  1,
m

(72)

since  the total probability of the System  being in any state is unity.
This is the analogue of equation (66). The probability of the System
being in the state e’,  or the probability of the observables 6 which
are diagonal in the representation having the values ,$‘, is, according
to the rule  for interpreting  representatives of kets (51) of 3 18,

c I<4?l~>12Pm  = <4’IPIO,
m

(73)

which gives us a meaning for each  term in the sum on the left-hand
side of (72). For continuous &‘s,  the right-hand  side of (73) gives the
probability of the (‘s having values in the neighbourhood of t’  per
unit range of Variation of the values 6’.

As in the classical theory, we may take a density equal to k times
the above p and consider it as representing a Gibbs ensemble of k
similar dynamical Systems, between which there  is no mutual dis-
turbance  or interaction.  We  shall then have k; on the right-hand side
of (72),  and (70) or (71) will give the total average  /3  for all the
members of the,ensemble,  while (73) will give the total probability
of a member of the ensemble  having values for its 6’s equal to 5
or in the neighbourhood of 5’ per unit  range of Variation of the
values 4’.

An important application of the Gibbs ensemble is to a dynamical
System  in thermodynamic  equilibrium with its surroundings at a
given temperature T. Gibbs showed that such a System  is repre-
sented in classical mechanics by the density

p = Ce-HH’, (74)
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EZ  being the Hamiltonian, which is now independent of the time, k:
being Boltzmann’s constant,  and c being a number Chosen  to make
the normalizing condition (66) hold. This formula may be taken over
unchanged  into the quantum  theory. At high temperatures, (74)
becomes p = c, which gives, on being substituted into the right-hand
side of (73),  c((‘l[‘)  = c in the case  of discrete l”s.  This Shows  that
at high temperatures all discrete  stutes  are qually  probable.



VI

ELEMENTARY APPLICATIONS

34. The harmonic oscillator
A SIMPLE and interesting example of a dynamical System  in quantum
mechanics is the harmonic oscillator. This example is of importante
for general theory, because  it forms a corner-stone in the theory of
radiation. The dynamical variables needed for describing the System
are just one coordinate 4 and its conjugate momentum  p. The
Hamiltonian in classical mechanics is

H = $ (p”+mWq2), (1)
where m is the mass of the oscillating particle  and w is 2rr times the
frequency. We assume the same Hamiltonian in quantum  mechanics.
This Hamiltonian, together with the quantum  condition (10) of 9 22,
define the System  completely.

The Heisenberg equations of motion are

4 = klt,  Hl = rptlm,
st = [pt,  H] = -mo2q,. 1

(2)

It is convenie&  to introduce the dimensionless complex dynamical
variable 7j = (2mfiw)-Q+imwq). (3)
The equations of motion (2) give

9jl  = (2mh)-*(-mw2q,+iapt)  = iw~.
This equation tan  be integrated to give

yt = qoeiwt, (4)
where 7. is  a linear Operator independent of t, and is equal to the
value of qt at time t = 0. The above equations are all as in the
classical theory.

We tan  express q and 13 in terms of 7 and its conjugate complex +j
and may thus work entirely in terms of 7 and q. We have

Tiwr)+j  = (2m)-1(p+imwq)(p-imoq)

= (2m)-1[p2+m2c02q2+imw(qp-pq)]
= H-Q?ko

and similarly Fiwfj7j  = H+iW.
Thus Q-r)+ji  = 1.

(5)
(6)
(7)



8 34 THE HARMONIC OSCILLATOR 137

Equation (5) or (6) gives H in terms  of 7 and 7 and (7) gives the
commutation  relation connecting 71  and +.  From  (5)

?iGjqlJ  = rjH+iC&j

and from  (6) ~w?ei = H+j+&.kj.

Thus +jH-Hrj  = EhTj. (8)
Also, (7) leads to +iqn---qn7j = nqn-l (9)
for any positive integer n, as may be verified by induction,  since, by
multiplying (9) by 31  on the left, we tan  deduce (9) with n+ 1 for n.

Let H’ be an eigenvalue of H and 1 H’) an eigenket belonging to it.
From  (5)

*&o(H’~+j~H’) =  (H’IH-@Weh’) =  (H’-&J)(H’(H’).

Now (H’[+jlH’) is the Square of the length of the ket +jjH’),  and
hence

<H’lqrjlH’>  2 0,
the case  of equality occurring only if ql H’) = 0. Also (H’ jH’) > 0.
Thus H’ > &t~, (10)
the case  of equality occurring only if +j 1 H’) = 0. From  the form (1)
of H as a sum of squares, we should expect its eigenvalues to be all
positive or zero (since the average  value of H for any state must be
positive or Zero.)  We now have the more stringent condition  (IO).

From (8)

HqIH’)  = (;~H---&.~J~)~H’) = (H’-&x~)ij~H’>. (11)
Now if H’ # @iw, rj]H’> is not zero and is then according to (11) an
eigenket of H belonging to the eigenvalue H’-Ziw.  Thus, with H’
any eigenvalue of H not equal to &JJ, H’-Ah is another eigenvalue
of H. We tan  repeat the argument and infer that, if H’-ih  # @io,
H’-21iw  is another eigenvalue of H. Continuing in this way, we
obtain the series of eigenvalues H’, H’-h, H’-21io,  H’-3Tio,...,
which  cannot  extend to infinity, because  then it would contain eigen-
values contradicting ( lO),  and tan terminate only with the value *ao.
Again, from  the conjugate complex of equation (8)

HqlH’)  = (qH+fiqW’) = W’+~4qlH’),
showing that H’+&J  is another eigenvalue of H, with q1H’) as an
eigenket belonging to it, unless qlH’>  = 0. The latter alternative
tan  be ruled out, since it would lead to

0 = &ioijq~H’) = (H+@~~J)IH’) = (H’+Q?io)IH’>,
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which contradicts (10). Thus H’+&J  is always another eigenvalue
of H, and so are Hf+ 2fi0,  H’+3b  and so on. Hence the eigenvalues
of H are the series of numbers

piw, ;ncfJ, piw, pkJ> . . . . (12)
extending to infinity. These are the possible energy values for the
harmonic  oscillator.

Let IO) be an eigenket of H belonging to the lowest eigenvalue
#CU,  so that

+jlO> = 0, (13)
and form the sequence of kets

IO>, dO>, q210>, TjqO), . . . . (14)
These kets are all eigenkets of H, belonging to the sequence of eigen-
values (12) respectively. Prom  (9) and (13)

ij7jqO)  = nTjJy0) (15)
for any non-negative integer n. Thus the set of kets (14) is such that
7 or +i  applied to any one of the set gives a ket dependent on the set.
New all the dynamical variables in our Problem  are expressible in terms
of q and +j,  so the kets (14) must form a complete set (otherwise there
would be some more dynamical variables). There is just one of these
kets for each  eigenvalue (12) of H, so H by itself forms a complete
commuting set of observables. The kets (14) correspond to the various
stationary states of the oscillator. The stationary state with energy
(%n+  g)rio,  corresponding  to 7” IO),  is called the n;th  quantum  state.

The Square of the length of the ket qnlO) is

wj”~“lO>  = n(Ol~n-17p-110>
with the help of (15). By induction,  we  find that

(Ol~n7p[O)  I:  n! (16)
provided IO) is normalized. Thus the kets (14) multiplied by the
coefficients n!-g with n = 0, 1,2  ,..., respectively form the basic  kets
of a representation, namely the representation with H diagonal. Any
ket 1s) tan  be expanded in the form

IX> = z\ w.P10>,
0

(1’)
where the x,‘s  are numbers. In this way the ket IX)  is put into
correspondence with a power series 2 X, 7n in the variable 3, the
various terms in the power series corresponding  to the various
stationary states.  If IX} is normalized, it defines a state for which
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the probability of the oscillator being in the &h quanfum state,
i.e. the probability of H having the value (n+$)fio,  is

P, = n!lxn12,

as follows from the same argument which led to (51) of 3 18.
(18)

We  may consider the ket IO>  as a Standard ket and the power series
in 17  as a wave function, since  any ket tan be expressed as such a
wave function rnultiplied  into this Standard ket. The present kind
of wave function differs from the usual kind, introduced by equations
(62) of 6 20, in that it is a function of the complex dynamical variable
‘1  instead of observables. It is, however, for many purposes the most
convenient wave function to use for describing states of the  harmonic
oscillator. The Standard ket IO)  satisfies the condition  ( 13), which
replaces the conditions (43) of 8 22 for the Standard ket in Schrö-
dinger’s representation.

Let us introduce Schrödinger’s representation with 4 diagonal and
obtain the representatives of the stationary states. From  (13) and (3)

(p-imwq)JO)  = 0,
so (q’Ip--imwq10)  = 0.
With the help of (45) of $22, this gives

a6-y (q’~0>+mwq’(q’~0) = 0.
3 (19)

The Solution of this differential equation is

(q’ IO)  = (mw~7di)~e-mw~‘m~2T1, (20)
the numerical  coefficient being Chosen  so as to make IO}  normalized.
We have here the representative of the normal state, as the state of
lowest energy is called. The representatives of the other stationary
states tan be obtained from  it: We have from (3)

(q’prpl0)  = (2mnw)-~/2(a’l(p+imwq)nlO)

= (2?r&w)-n12in
(
-$+M “<cr’lO>1

= in(254&0~)--7@(rn~/&)t -fi--$+m~q’  ne-naoq’p/2fi.
( 1

(21)

This may easily be worked out for small values of n. The result is of
the form of e- mwq’e12fi  times a power series of degree n in q’. A further
factor n!-* must be inserted in (21) to get the normalized representa-
tive of the &h quantum  state. The factor in may be discarded, being
merely a Phase  factor.
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35. Angular momentum

a 3 5

Let us consider a particle  described by the three Cartesian coordi-
nates x, Y, x and their conjugate momenta Ps, PV,  Pz.  Its angular
momentum  about the origin is defined as in the classical theory, by

m, = YPi-ZP, my  = zP,-xPz mf3  = XPy-YPm (22)

or by the vector equation
m=xxp.

We must evaluate the P.B.s  of the angular momentum  components
with the dynamical variables x, pz, etc., and with each  other. This
we tan do most conveniently with the help of the laws (4) and (5) of
9 21, thus

[m,, XI = [XPy-YPm 4  = -Yl-J&,X]  = y,

cm,,Yl  = bP,-YPWYI  = X[Py,Yl = -x7

Cm,,z]  = [xpy-~~z9  21  = 0,
and similarly,

[%PLzl = P*> [m,,P,l = -Pm
[m,,PJ  = 0,

with corresponding relations for m, and mg. Again

[my, %l = bPc-XPm %l  = 4Pm mzl-1x9  %lPa
= --vy+YPa  = mm

[m,, m,]  = mu, [Wz,  m,]  = m,.

1 (23)
(24)
(25)
(26)

1 (27)
These results are all the sarne as in the classical theory. The sign in
the results (23))  (25))  and (27) may easily be remembered from the
rule that the + sign occurs when the three dynamical variables, con-
sisting of the two in the P.B. on the left-hand side and the one
forming the result on the right, are in the cyclic Order  (xyx) and the
- sign occurs otherwise. Equations (27) may be put in the vector
form mxm = ifim. (28)

Now suppose we have several particles  with angular momenta
m,, m,,... . Esch of these angular momentum  vectors  will satisfy
(28))  thus m, x m, = iZ?q,

and any one of them will commute  with any other, so that

m,xm,+m,xm;=  0 (r #s).
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Hence  if M = 1 m,  is the total angular momentum,
T

MxM = 2 qxm,  = 2 qxq+  2 (m,xm,+m,xm,)
TS r r<s

= ifi  ;f m,  = %M. (29)T
This result is of the same form as (28),  so that the components of the
total angular momentum  M of any number of particles satisfy the
same commutation  relations as those of the angular momentum  of
a Single particle.

Let A,,  A,, A,  denote the three coordinates of any one of the
particles, or else the three components of momentum  of one of
the particles. The A’s will commute  with the angular momenta of
the other particles, and hence  from (23),  (24),  (29,  and (26)

[M,,  A,]  = A,, [K, Af/] = -4, [M,,  A,] = 0. (30)

If B,, J$,,  B, are a second  set of three quantities denoting the
coordinates or momentum  components of one of the particles, they
will satisfy similar relations to (30).  We shall then have

PL 4 %+4/ BI/+4 4
= Pk &1%+4P?z7  4!lfv?3~  4/lq/+4/M q/l
= A,  B,+A,  B,-A,  B,-A,  B,
= 0.

Thus the scalar product A,  B,+A,  B,+ A, Bz commutes with MS,
and similarly with &!%  and &&.  Introduce the vector product

AxB=C
or
A,  Bz-A,  B, = Cz, A, Bz--A, Bz = C,, A,  BP--A,  BS = Cs.

We have PL GI = -AZ B,+A,B,  = C,

and similarly [M,,c,J = 4, [i&CJ  = 0.

These equations are again of the form (3O),  with C for A. We tan
conclude from this work that equations of the form (30) hold for the
three components of any vector that we tan  construct from  our
dynamical variables, and that any scalar commutes with M.

We tan  introduce linear Operators R referring to rotations about
the origin in the same way in which  we introduced the linear Operators
D in 5 25 referring to displacements. Taking a rotation through an
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angle S+  about the x-axis and making S$  infinitesimal, we  tan  obtain
the limit Operator corresponding to (64) of 9 25,

lim (R- l)/S+,
W-+-O

which we shall cal1  the rotution  operator  about the x-axis and denote
by rZ. Like the displacement Operators, rZ  is a pure imaginary linear
Operator and is undetermined to the extent of an arbitrary additive
pure imaginary number. Corresponding to (66) of 0 25, the Change
in any dynamical variable v caused  by a rotation through a small
angle S+  about the x-axis is

S$(r,  v---vr,L (31)
to the first Order  in S+.  Now the changes produced in the three
components A,, A,,  A,  of a vector by a (right-handed) rotation S+
about the x-axis applied to all measuring apparatus are S&4,,
-S+,,  and 0 respectively, and any scalar quantity is unchanged  by
the rotation. Equating these changes to (31),  we find that

rzA,---A,r,  = A,, r,A,--A,r,  = -A,,

rzA,--A,r, = 0,

and rz commutes  with any scalar. Comparing these results with (30),
we see that Zr,  satisfies the Same commutation  relations as M,.
Their differente, M,---iEirz, commutes  with all the dynamical variables
and must therefore be a number. This number, which is necessarily
real since  M, and Sr, are real, may be made zero by a suitable choice
of the arbitrary pure imaginary number that tan  be added to rz.  We
then have the result iJ&  = ifir,. (32)
Similar equations hold for JI,  and M,.  They are the analogues of (69)
of $25. Thus the  total angular momentum  is connected with the rota-
tion Operators as the total momentum  is connected  with the displacement
Operators. This conclusion is valid for any Point  as origin.

The above argument applies to the angular momentum  arising
from  the motion of particles,  defined by (22) for each  particle.  There
is another kind of angular momentum  occurring in atomic  theory,
spin angular  momentum.  The former  kind of angular momentum  will
be called orbital angukzr momentum, to distinguish it. The spin angu-
lar momentum  of a particle  should be pictured as due to some internal
motion of the particle,  so that it is associated with different degrees
of freedom from those describing the motion of the particle  as a whole,
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and hence the dynamical variables that describe the spin must com-
mute with x, y,  x, ps,  JZ+,,  and ps.  The spin does not correspond vexy
closely to anything in classical mechanics, so the method of classical
analogy is not suitable for studying it. However, we tan build up a
theory of the spin simply from the assumption that the components
of the Spin  angular momentum  are connected with the rotation opera-
tors in the Same way as we had above for orbital angular momentum,
i.e. equation (32) holds with MB as the x component of the spin angular
momentum  of a particle and r, as the rotation Operator about the
x-axis referring to states of spin of that particle. With this assump-
tion, the commutation  relations connecting the components of the
spin angular momentum  M with any vector A referring to the spin
must be of the Standard form (30),  and hence, taking A to be the
spin angular momentum  itself, we  have equation (29) holding also
for the Spin. We now have (29) holding quite generally, for any sum
of spin and orbital angular momenta, and also (30) will hold generally,
for M the total spin and orbital angular momentum  and A any vector
dynamical variable, and the connexion between angular momentum
and rotation Operators will be always valid.

As an irnmediate consequence of this connexion, we tan  deduce th8
iaw of conservation of angdur  momentum. For an isolated System,  the
Hamiltonian must be unchanged  by any rotation about the origin, in
other words it must be a scalar,  so it must commute  with the angular
momentum  about the origin. Thus the angular momentum  is a
constant  of the motion. For this argument the origin  may be any
Point.

As a second  immediate consequence, we tan deduce that a state
with xero total  angular momentum  is sphericully  symmetricai.  The stafe
will correspond to a ket IS), say, satisfying

B,IS>  = J!!lJS)  = M,IX)  = 0,

and hence r,[S)  = ry\S)  = r,.S) = 0. -

This Shows  that the ket IX>  is unaltered by infSt8simal  rotations,
and it must therefore be unaltered by finite rotations, since the latter
tan  be built up from  infinitesimal ones. Thus the state is spherically
symmetrical. The converse  theorem, a qherically  symmetrical  Stute
kts xero total angulur  momentum,  is also true, though its proof is not
quite so simple. A spherically symmetrical  state corresponds to a ket
IS) whose direction is unaltered by any  rotation. Thus the Change
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in 18) produced by a rotation Operator rs,  rl/,  or  rZ  must  be a numerical
multiple of 1 S), say

r,Ifi> = cxlS>, r,l@  = c,lQ %P> = c,w,
where the c’s are numbers. This gives

M,lS> = inc,Is), Jf$Q = iKc,lS),
M,jS)  = i?iczIX). (33)

These equations are not consistent  with  the commutation relations
(29) for M,, My> M, unless c, = cy  = 15~  = 0, in which case  the state
has zero total angular momentum. We have in (33) an example of
a ket which is simultaneously an eigenket of the three non-commuting
linear Operators M,, My, M,, and this is possible only if all three
eigenvalues are Zero.

36. Properties of angular momentum
There are some general properties of angular momentum, deducible

simply fiom the commutation relations between the three compo-
nents. These propefiies  must hold equally for spin and orbital angular
momentum. Let m,, mg,  m,  be the three components of an angular
momentum, and introduce  the quantity ß defined by

ß = m~+-m;-+-m;.

Since  /3  is a scalar  it must commute  with m,,  mg,  and rn,.  Let us
suppose we have a dynamioal  System  for which m,,  mg, m, are the
only dynamical variables. Then ß commutes  with everything and
must be a number.  We tan  study this dynamical System  on much
the sime lines  as we used for the harmonic  oscillator in 5 34.

Put m X -im, = 7.
From the commutation relations (27) we get

ijq = (m,+im,)(m,-imJ  = m$+m~---i(m,m,-m,m,)
= ß-+-i-~m, (34)

and similarly qfj = ß-rni-nm,. (361
Thus 7jq-r)Tj  = 21imz. (36)
Also mgq--r)mz  =  %m,---?irn$  =  -6~. (37)
We assume that the components of an angular momentum  are
observables and thus m, has eigenvalues. Let rn:  be one of them,
and Impf)  an eigenket belonging to it. From (34)

<m$jqlmL>  = <&Iß--mi+~m&d> = @--m~2+~~~>(m~~m~>.

ii ,
i
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The left-hand side here is the Square of the length of the ket qlm;)
and is thus greater than or equal to Zero,  the case  of equality occur-
ring if and only if 37  Im:)  = 0. Hence

ß-m;“+&m;  2 0,

or ß+*n2  > (m;-@)? (38)
Thus ß+@”  2 0.

’ Defining  the number 7 by

k+gi  = (ß+@“y  = (m;+m;+m;+$@)*,

so that k a -86,  the inequality (38) becomes

(39)

- > k+@ > fm;-+fil

or k+#i  >  m; >  -k. (40)
An equality occurs if and only if 7 Im;>  = 0. Similarly from  (35)

<m2r+$O  = (ß-m~2-+W)<m34>,
showing that ß -m~2-hlm~ 2 0

or k > mA > -k-4,

with an equality occurring if and only if +jjmL)  = 0. This result
combined with (40) Shows  that k 2 0 and

k > na;  2 -k, (41)
withm~=kif~lm~>=Oandm~=-kif~lm~>=O.

From (37)

Now if rn:  # -k, 7 Im:) is not zero and is then an eigenket of mz
belonging to the eigenvalue VI;--fi. Similarly, if rn~-$i  # -k, mi-2fi
is another eigenvalue of rn*,  and so op. We get in this way a series
of eigenvalues rn;, mi-4, mL---21i,...,  which must termirrate from (4l),
and tan terminate only with thevalue -k. Again, from the conjugate
complex of equation (37)

m,  rilmL>  = (@b+f$)  Im;>  = (mi+f+j  W,
showing that rni+fi  is another eigenvalue of m, unless  Olms) = 0, in
which case rnz  = k. Continuing in this way we get a series of eigen-
values mL,mL+fi,  rnL+%i  ,..., which must termirrate from (.41),  and
tan terminate only with the value k. We tan  conclude that 2k is an
integral multiple of iti  and that the eigenvalues of m, are

k, k-4, k-4%,  . . . . -k+fi,  -k. (42)
8696.67 L



1 4 6 ELEMENTARY APPLICATIONS 5 36

The eigenvalues of mz and my  are the same, from symmetry. These
eigenvalues are all integral or half odd integral multiples of 6, accord-
ing fo whether 2k is an even or odd multiple of fi.

Let Imax)  be an eigenket of m, belonging to the maximum eigen-
value k, so that +jlmax)  = 0,

and ferm  the sequence of kets
(43)

Im->,  37lmaxh  r121max>, . . . . 7j2Yfi 1 max) . (44)

These kets are all eigenkets of rnS,  belonging to the sequence of eigen-
values (42) respectively. The set of kets (44) is such that the Operator
q applied to any one of them gives a ket dependent on the set (q
applied to the last gives Zero),  and from (36) and (43) one sees
that q applied to any one of the set also gives a ket dependent on the
Set. All the dynamical variables for the System  we are now dealing
with are expressible in terms of 7 and q,  so the set of kets (44) is a
complete set. There is just one of these kets for each  eigenvalue (42)
of m,,  so m,  by itself forms a complete commuting set of observables.

It is convenient to define  the magnitude of the angnlar momentum
vector m to be k, given by (39),  rather than /3t,  because  the possible
values for k are (45)
extending to infinity,  while the possible values for /3b  are a more
complicated set of numbers.

Fora dynamical System  involving other dynamical variables besides
m,,  mv,  and m,,  there may be variables that do not commute  with /?.
Then /3  is no longer a number, but a general linear Operator. This
happens for any orbital angular momentum  (22),  as x, y,  x, pz, py, and
pS  to not commute  with /3.  We shall assume that /3  is always an
observable, and k tan then be deCned  by (39) with the positive Square
root fimction  and is also an observable. We shall call  k so defined
the magnitude of the angular momentum  vector m in the general
case.  The above analysis  by which  we obtained the eigenvalues of
vS is still valid if we replace Im;) by a simultaneous eigenket Ik’n$>
of the commuting observables k and mz,  and leads to the result that
the possible eigenvalues for k are the numbers (45),  and for each
eigenvalue k’ of k the eigenvalues of m,  are the numbers (42) with k’
substituted for k.  We have here an example of a phenomenon which
we have not met with previously, namely that with two commuting
observables, the eigenvalues of one depend on what eigenvalue we
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assign to the other. This phenomenon may be understood as the two
observables being not altogether independent, but partially functions
of one another. The number of independent simultaneous eigenkets
of Jc  and m, belonging to the eigenvalues k’ and mP;  must be indepen-
dent of rn:,  since  for each  independent Jk’m;) we tan  obtain an
independent 1 k’mz),  for any rni in the sequence (42),  by multiplying
jk’ma>  by a suitable power of 7 or +j.

As an example let us consider a dynamical System  with two angular
momenta m1 and m,, which  commute with one another. If there are
no other dynamical variables, then all the dynamical variables com-
mute  with the magnitudes k, and kz  of m, and m,, so k, and k, are
numbers. However, the magnitude K of the resultant angular
momentum  M = m,+m,  is not a number (it does not commute
with the components of m, and m,) and it is interesting to work out
the eigenvalues of K. This tan  be done most simply by a method
of counting independent kets. There is one independent simultaneous
eigenket of m,,  and rnza  belonging to any eigenvalue 4 having one of
the values kl, kl--K, kl--2fi ,..., -kl  and any eigenvalue rn; having one
of the values k,, k,--jii,  k,---21i,...,  -k,, and this ket is an eigenket
of M,  belonging to the eigenvalue ML  = m&+rnL. The possible
values of iV& are thus k,+k,, k,+k,-Ti, k,+k,-2&,...,-kl--k,,  and
the number of times each  of them occurs is given by the following
scheme (if we assume for definiteness that k, > kJ,

k,+k,, kl+k24, k,+k,-26 ,..., kl--k,,  kl--kz--fi  ,...

1 2 3 . . . 2k,+1  2k,+l . . .
(46)

. . . -k,+k,,-k,+k,-&,...,--k,-E,

. . . 2k,+  1 2k, . . . 1

Now each  eigenvalue K’ of K will be associated with the eigenvalues
K’, K’-?i, K’-26  ,..., -K’ for Hz,  with the same number of indepen-
dent simultaneous eigenkets of K and M’  for each  of them. The total
number of independent eigenkets of MzI  belonging to any eigenvalue
.&fL  must be the Same, whether we take them to be simultaneous
eigenkets of mb and mb or  simultaneous eigenkets of K and M,, i.e.
it is always given by the scheme (46). It follows that the eigenvalues
for K are

-1 +k29 k,+k,-5, kl-j-k,--Si,  .  .  .  .  kl-k,, (4’)

and that for each  of these eigenvalues for K and an eigenvalue for
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2M, going with it there is just one independent simultaneous eigenket
of K and M,.

The effect of rotations on eigenkets of angular momentum  variables
should be noted. Take any eigenket I&Q of the x component of total
angular momentum  for any dynamical System, and apply to it a small
rotation through an angle 84 about the x-axis. It will Change into

u+wr*)IJf;) = (1-~~~1M,/qIM;>
with the help of (32). This equals

to the first Order  in 84. Thus IM:) gets multiplied by the numeriert1
factor  e- iS$MJn. By applying a succession of these small rotations, we
find that the application of a finite rotation through an angle 4 about
the z-axis Causes IM:) to get multiplied by e-i+“Jn.  Putting 4 = 277,
we find that an application of one revolution about the x-axis leaves
IM:) unchanged if the eigenvalue MI is an integral multiple of & and
Causes IM;) to Change sign if -84:  is half an odd integral multiple of 6.
Now consider an eigenket IK’>  of the magnitude K of the total angu-
lar momentum. If the eigenva1ue.K’  is an integral multiple of 6, the
possible eigenvalues of il&  are all integral multiples of fi and the applica-
tion of one revolution about the x-axis must leave 1 K’) unchanged.
Conversely, if K’ is half an odd integral multiple of 6,  the possible eigen-
values of MS are all half odd integral multiples of 6 and the revolution
must Change the sign of 1 K’). From symmetry, the application of a
revolution about any other axis must have the same effect on IK’)
as one about the x-axis. We thus get the general result, the application
of one revolution about  any axis leaves a Eet unchanged or  changes  its
sign according to whether it belongs  to eigenvalues of the magnitude of
the total  angulur momentum  which  are integral or half odd integral
multiples of fi. A state, of course, is always unaffected by the revolu-
tion, since  a state is unaffected by a Change of sign of the ket corre-
sponding to it.
, For a dynamical System  involving only orbital angular momenta,

a ket must be unchanged by a revolution about an axis, since  we tan
set up Schrödinger’s representation, with  the coordinates of all the
particles  diagonal, and the Schrödinger representative of a ket will
get brought back to its original value by the revolution. It follows
that the eigenvalues of the magnitude of an orbital angular momentum
are always integral multipies  of 6.  The eigenvalues of a component



of an orbital angular momentum  are also always integral multiples
of 6.  For a spin angular momentum, Schrödinger’s representation
does not exist and both kinds of eigenvalue are possible.

37. The spin of the electron
Electrons,  and also some of the other fundamental particles  (pro-

tons, neutrons) have a spin whose magnitude is 4%.  This is found
from experimental evidente, and also there are theoretical reasons
showing that this spin value is more elementary than any other, even
spin Zero (see Chapter XI). The study of this particular  spin is there-
fore of special  importante.

For dealing with an angular momentum  m whose magnitude is 46,
it is convenient to put m = @o. (48)
The components of the vector  Q then satisfy, from  (27), ’ ’’

oy  Dz -VZQ = 2iu, (r

az  ox -ux  oz = 2io,,

Ox  ug -(Q*x = 2iaz. L i

(49)

The eigenvalues of rnz are 46 and -+fi, so the eigenvalues of oB are 1
and - 1, and 0: has just the one eigenvalue 1. It follows that c$  must
equal 1, and similarly for 05 and D& i.e.

2
0, = $=  o;=  1. (50)

We tan  get equations (49) and (50) into a simpler form by means of
some straightforward non-commutative algebra. From (60)

o$uz-o,oy  = 0

or a,(o,o,-a,a~)+(ay~z-a,a,)oy  = 0
or cTy~x+fJxay = 0
with the help of the first of equations (49). This means oZ  uy  - --ag  ax.
Two dynamical variables or linear Operators like these which  satisfy
the commutative law of multiplication  except for a minus sign will
be said to anticommute.  Thus 0, anticommutes  with aU.  From sym-
metry each  of the three dynamical variables ox,  oy,  a, must anti-
commute  with any other. Equations (49) may now be written

and also from (50)

*y  az = io, = -azuv,
*z =x = io, = -cr,a,,

.
OxU,  = za, = -csyuz,

.
axoyr7z = 2.
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Equations (50),  (Sl), (52) are the fundamental equations satisfied by
the spin variables o describing a spin whose magnitude is 46.

Let us set up a matrix representation for the a’s  and let us take a,
to be diagonal. If there are no other independent dynamical variables
besides the m’s or a’s in our dynamical System, then a, by itself forms
a complete set of commuting observables, since  the form of equations
(60) and (61) is such that we cannot  construct out of u%,  Um,  and u,
any new dynamical variable that commutes  with a,. The diagonal
elements of the matrix representing U, being the eigenvalues 1 and
- 1 of oz, the matrix itself will be

Let a, be represented by

This matrix must be Hermitian, so that a1 and ad must be real and
a,  and a, conjugate complex numbers. The equation aB  a,  = -az a,
gives us

so that a, = a4  = 0 . Hence  0,  is represented by a matrix of the form

The equation 4 = 1 now shows that a, us  = 1. ‘Thus a2  and a3,  being
conjugate complex numbers, must be of the form e”a  and e-ia re-
spectively, where 01  is a real number,  so that 0% is represented by a
.matrix  of the form

.  .
Similarly it may be shown that ?Y  is also represented by a matrix of
this form. By suitably choosing the Phase  factors in the representa-
tion, which  is not completely determined by the condition  that us
shall be diagonal, we tan arrange that uz  shall be represented by the
matrix 0 1( 11 0’

The representative of uY is then determined by the equation

% = iu,u,. We thus obtain finally the three matrices
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to represent a,,  (T~, and a, respectively, which matrices  satisfy all the
algebraic  relations (49))  (50),  (5 l), (52). The component of the vector
Q in an arbitrary direction specified  by the direction cosines Z, m,  72,
namely ZG, + VZG~  + na,,  is represented by

( n I - im
E-f-im 1- n  ’ (54)

The representative of a ket vector will consist of just two numbers,
corresponding to the two values + 1 and - 1 for 0;. These two num-
bers form a function of the variable CF:  whose domain  conqists of only
the two Points  + 1 and - 1. The state for which an has the value unity
will be represented by the function, f,(4  say, consisting of the pair
of numbers 1, 0 and that for which 5, has the value - 1 will be
represented by the function, fB(5;) say, consisting of the pair 0, 1.
Any function of / the variable 5;, i.e. any pair of numbers, tan  be
expressed as a linear combination of these two. Thus any stute tan
be obtained by superposition of the two stutes for which oz equaLs  -/-,l  and
- 1 respectively. For example, the state for which the component of
a in the direction Z, m,  n, represented by (54),  has the value +l  is
represented by the pair of numbers a, b which satisfy

or

n
l-j-im

nu+(Z--im)b  = a,

(l+im)a-nb = b.

Thus
a I-im 1-l-n-=-=-•
b l - n l-j-im

This state tan  be regarded as a Superposition of the two states for
’ which aa equals + 1 and - 1, the relative weights in the superposition

process being as

ja12 : fb[” = ~Z-im~2: (~---Ts)~  = l+n  : l-n. (55)
For the complete description of an electron  (or other elementary

particle  with spin Qiti)  we require the spin dynamical variables 5,

whose connexion with the spin angular momentum  is given by (48),
together with the Cartesian coordinates x, y, x and momenta pz,  py,
pz. The spin dynamical  variables commute  with these coordinates
and momenta. Thus a complete set of commuting observables for a
System  consisting of a Single electron will be x, y, x, oz.  In a repre-
sentation in which these are diagonal, the representative of any state

i
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will be a function of four variables x’,  y’, x’, 0;. Since  0; has a domain
consisting of only two Points,  nameiy 1 and - 1, this function of four
variables is the Same as two functions of three variables, namely the
two functions

<x’y’q)+  = <x’,y’,C+ll>, (x’y’x’ 1 )- = (x’,  y’, x‘,  - 11). (56)

Thus the  presence of the spin nmy be considered either us introducing  a
new variable into the representative of a state or us giving this representa-
tive two components.

38. Motion in a central field of forte
An atom consists of a massive positively charged  nucleus together

with a number of electrons moving round, under  the influence of the
attractive forte of the nucleus and their own mutual repulsions. An
exact treatment of this dynamical System  is a very difficult mathe-
matical Problem.  One tan,  however, gain some insight into the main
features of the System  by making the rough approximation of regard-
ing each  electron  as moving independently in a certain central  field
of forte, namely that of the nucleus, assumed fixed, together with
some kind of average  of the forces due to the other electrons. Thus
our present Problem  of the motion of a particle  in a central field of
forte  forms a corner-stone in the theory of the atom.

Let the Cartesian coordinates of the particle,  referred to a System
of axes with the centre  of forte  as origin, be x, y, x and the corre-
sponding components of momentum  pa, pu, pz. The Hamiltonian,
with neglect of relativistic  mechanics, will be of the form

27  = 1/2m. (P:+P;+P3+% (57)
where V, the potential energy, is a function only of (x2+y2+x2).  To
develop the theory it is convenient to introduce polar dynamical
variables. We introduce first the radius r, defined as the positive
Square root r  =  (x2+y2+x2)*.

Its eigenvalues go from 0 to Co. If we evaluzte its P.B.s  with ps,  py,
and p,, we obtain, with the help of formula (32) of zj 22,

[r,p,]  - E = :, [w,] = F9 [r,pJ  = :,

the Same as in the classical theory. We introduce also the dynamical
variable pP  defined by

P3T  = +(XPz+YP,+~PJ= (58)
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Its P.B. with r is given by

r[r,pJ  = [c  v%l  = Cr,  wc+wy+%l
= X[r,~,l+Y[rtPyj+X[r,13,1
= x.x/r+y.y/r+z.zp = r.

Hence PY PJ = 1

OI‘ rp,-p,r  = in.

The commutation  relation between r and Pr  is just the one for a
canonical coordinate and momentum, namely equation (10) of 5 22.
This makes P,~ like the momentum  conjugate to the r coordinate, but
it is not exactly equal to this momentum  because  it is not real, its
conjugate complex being

f% = (P, x+p,  Y+Pz Gr-l  = (~p,+YPg+~Pz-  3ar-l
= (rpT--3ifi)r-l  = pr-2ifb--1. (69)

Thus pr- $kl  is real and is the true momentum  conjugate to r.
The angular momentum  m of the particle  about the origin is given

by (22) and its magnitude k is given by (39). Since  r and pv are
scalars, they commute  with m, and therefore also with k.

We tan  express the Hamiltonian in terms of r, pr,  and k. We have,
if z denotes a sum over cyclic permutations of the suffixes x, y,  x,

k;k+n>  = 2  m;  = 2  (~P,-Yza2

=”  ~“Pu~~+YPzYPz-~P~YPz-YpLT~Py)xw
= 2  (X2p;+y2P~-X2izP1/Y-YP~Pz~+~2P:-~PLEP3F-

zu2

=  (x2+y2-~z2)(p”fpy+~)-
- 2ifixpJ

-(xP,+YP,+?Pz)CiPaX+PyY+P~~+2w

= r2(p5+pY+p~)-r23,(1?,r+2in)

= r2(p~+p~+pZ)-w%
from (59). Hence

H = &
(
ipFr+ @p)+v. (60)

This form for H is such that k commutes  not only with H, as is
necessary since  k is a constant  of the motion, but also with every
dynamical variable occurring  in H, namely r, pr,  and V, which  is a
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function of r.  In consequence, a simple treatment becomes possible,
namely, we may consider an eigenstate of I% belonging to an eigen-
value k’  and then we tan Substitute iY for E in (60) and get a Problem
in one degree of freedom r.

Let us introduce Schrödinger’s representation with x, y,  x diagonal.
Then pz, py, p, are equal to the Operators -4 a/ax,  -4 a/ay,  -4% a/az
respectively. A state is represented by a wave function $(xyxt)  satis-
fying Schrödinger’s wave equation (7) of 3 27, which now reads, with
H given by (57),

We may pass from
coordinates r, 0,4 by

the Cartesian coordinates
means of the equations

X = rsinOcos$,

Y = rsinOsin+,

X= r cos l9,

x, y, x to the polar

and may express the wave function in terms of the polar coordinates,
so that it reads t,&@t). The equations (62) give the Operator equation

a-= axa+aya+aza- -  - -  --=
ar arax aray  tia2 -;;+;;,g;,

which Shows,  on being compared with (58),  that p,,  = -4 a/ar.  Thus
Schrödinger’s wave equation reads, with the form (60) for H,

,a* fi2 1 a2-= - --
i (at ~TYA

-,+w+w
T at-2 F +w1  1

(63)

Here k is a certain linear Operator which, since  it commutes  with r
and a/ar, tan  involve only 6, #, a/8,  and a/a+.  From the formula

w+w = m~+??g+?n~, (64)
which Comes  from (39),  and from (62) one tan work out the form of
k(k+fi)  and one finds

W+fi) 1 asinoa  1 a2
--@---=--- - - - -sin 8 ae ae sin29 ap  ’ (65)

This Operator is well known in mathematical physics.  Its eigen-
functions are called sphericul  harmonics  and its eigenvalues are
n(n,+l)  where n is an integer. Thus the theory of spherical har-
monics  provides an alternative proof that the eigenvalues of k are
integral multiples of $.
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For an eigenstate of E belonging to the eigenvalue & (n a non-
negative integer) the wave function will be of the form

# = ~-%w?@~>, (66)
where  8,  (04) satisfies

(67)
i.e. from (65) Sn is a spherical harmonic  of Order  n.  The factor  r-l
is inserted in (66) for convenience. Substituting (66) into (63),  we
get as the equation for x

ax Ti2
%f=  - --+1 ( a2  nqy+v}x.

2m  s-r2 (68)

If the state is a stationary state belonging to the energy value H’,
x will be of the form x(d)  = Xo(r)e-sri~fi

and (68) will reduce to

52
H’xo  =  T&  --/-j-j+

1 (
a2 n!d!tp  +v xo.

) 1
(69)

This equation may be used to determine  the energy-levels H’ of the
System. For each Solution x,,  of (69j,  arising from a given n, there
will be 2n+l independent states, because  there are 2n+l  indepen-
dent solutions of (67) corresponding to the 212+ 1 different values
that  a component of the angular  momentum, na, say, tan  take on.

The probability of the particle being in an element of volume
dxdydx  is proportional to [# 1%-&.&  With $J of the form (66) this
becomes  r-21~/2/X,12dxdyd~.  The probability of the particle being in
a spherical Shell between r and r+dr  is then proportional to 1x12dr.
It now becomes clear  that, in solving equation (68) or (69),  we must
impose a boundary condition on the function x at r = 0, namely the
function must be such that the integral to the origin 1 1~ l2 dr k

0

convergent.  If this integral were not convergent,  the wave function
would represent a state for which  the chances  arc  inSnitely  in favour
of the particle being at the origin and such a state would not be
physically admissible.

The boundary condition at r = 0 obtained by the above considera-
tion of probabilities is, however, not sufficiently stringent. We get a
more stringent condition by verifying  that the wave function obtained
by solving the wave equation in polar coordinates (63) really satisfies
the wave equation in Cartesian  coordinates (61). Let us take the case
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of V = 0, giving us the Problem  of the free particle. Applied to a
stationary state with energy H’ = 0, equation (61)  gives

v2* = 0, (70)

where V2  is written for the Laplacian  Operator a2/ax2+a2/ay2+  a2/ax2,
and equation (63) gives

(
i a24 -r-
T ar2 kw)# = 0. (71)

A Solution of (71) for k: = 0 is t) = r-l. This does not satisfy
(7O), since,  although V2r-1 vanishes for any finite value of r, its integral
through a volume containing the origin is -4~  (as may be verified
bg transforming  this volume integral to a surface  integral by means
of Gauss’s  theorem), and hence

V2Y-1 = -47T  S(x)S(y)S(x). (72)

Thus not every solution of (71) gives a Solution of (70),  and more
generally, not every solution of (63) is a Solution of (61). We mußt
impose on the Solution of (63) the condition that it shall not tend to
infinity as rapidly as r-l  when r -+ 0 in Order  that, when substituted
into (61),  it shall not give a S function on the right like the right-hand
side of (72). Only when equation (63) is supplemented with this condi-
tion does it become equivalent to equation (61). We thus hrtve the
boundary condition r$ -+ 0 or  x + 0 as r -+ 0.

There  are also boundary conditions for the wave function at r = 00.
If we are interested only in ‘closed’ states, i.e. states for which  the
particle does not go off to infinity, we must restritt  the integral to

infinity  s IX(~) l2 dr to be convergent.  These closed states, however,
arc  not the only  ones that arc physically permissible, as we tan also
have states in which  the particle arrives from infinity, is scattered
by the central  field of forte, and goes off to infinity again. For these
states the watve  function may remain finite as r + co. Such states  will
be dealt with in Chapter VIII under  the heading of collision  Problems.
In any  case  the wave function must not tend to infinity as r -+ CO,  or
it will represent a state that has no physical meaning.

39. Energy-levels of the hydrogen atom
The above analysis  may be applied to the Problem  of the hydrogen

atom with neglect of relativistic  mechanics and the spin of the



§ 39 ENERGY-LEVELS OF THE HYDROGEN ATOM 157

electron. The potential energy V is nowt -e2/r,  so that equation
(69) becomes

!!Yy+L;$ +, = -3?&o.
dr2 (73)

A thorough investigation of this equation has been given by Schrö-
dinger.  We shall here obtain its eigenvalues H’ by an elementary
argument .

It is convenient to put
x. = f(r)e-rju, (74)

introducing the new function  f(r), where  a is one or other of the
Square roots a = -J--,/(--P/ZmH’). (75)
Equation (73) now becomes

We look for a Solution of this equation in the form of a power series

(77)

in which consecutive values for s differ by unity altbough these
values themselves need not be integers. On substituting (77) in (76)
we obtain

2 ~~(~(~-1)1”8-~~-(2~/a)~~-~-n(~+l)r~-~+(2me~/li~)r~-~~  = 0,
8

which gives, on equating to Zero the coefficient of P+-~,  the following
relation between successive coefficients c,,

c,[s(s-  1) -n(n+ l)] = c~~~[~(s---  l)/a- 2rne2/K2]. (78)
We saw in the preceding section  that only those eigenfunctions  x
are allowed that tend to Zero with r and hence,  from (74),  f(r) must
tend to zero  with r.  The series (77) must therefore terminate on the
side of small  s and the minimum  value of s must be greater than Zero.
Now the only possible minimum  values of s are those that make the
coefficient of cs in (78) vanish, i.e. n+ 1 and -n, and the second
of these is negative or  Zero. Thus the minimum  value of s must be
n+ 1. Since  n is always an integer, the values of s will all be integers.

+ The e here,  denoting minus the Charge  on an electron, is, of course,  to be dis-
tinguished from the e denoting the base of exponentials.

$ Schrödinger, Am.  d. Physik, 79 (1926),  361.
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The series (77) will in general extend to infinity  on the side of large s.
For large values of s the ratio of successive terms is

2 r3-y=-
Q-1 sa

according to (78). Thus the series (77) will always converge, as the
ratios of the higher  terms to one another are the Same as for the

1 2r8CO- -
s! a ’8

(79)

which converges to e2rla.
We must now examine how our Solution x. behaves for large

values of r. We must distinguish between the two cases  of H’ positive
and H’ negative. For H’ negative, a given by (75) will be real. Sup-
pose we take the positive value for a. Then as r -+ 00  the sum of the
series (77)  will tend to inf?.nity according to the Same law as the sum
of the series (79),  i.e. the law e2rla. Thus, from (74),  x. will tend to
i..n.fGty  according to the law eda  and will not represent a physically
possible state.  There is therefore in general no permissible Solution
of (73) for negative values of H’. An exception arises,  however, when-
ever the series (77) terminates on the side of large s,  in which case  the
boundary conditions are all satisfied. The condition for this termina-
tion of the series is that the coefficient of csVr  in (78) shall vanish for
some value of the suffix s- 1 not less than its minimum  value n+  1,
which is the same as the condition that

s 9ne2- - -  =
na 0a

for some integer .s not less than n+ 1. With the help of (75) this
condition becomes

H’=  -11264
2s2P’ (80)

and is thus a condition for the energy-level H’. Since  s may be any
positive integer, the formula (80) gives a discrete  set of negative
energy-levels  for the hydrogen atom. These are in agreement with
experiment. For each  of them (except the lowest one s = 1) there
are several independent states, as there are various possible values
for n, namely any positive or zero integer less than s.  This multi-
plicity of states belonging to an energy-level is in addition to that
mentioned in the preceding section arising from the various possible
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values for a component of angular momentum, which latter multi-
plicity occurs with any central  field of foroe. The n multiplicity  occurs
only with an inverse  Square law of forte and even then is removed
when one takes relativistic  mechanics into account, as will be found
in Chapter XI. The Solution x.  of (73) when H’ satisfies (80) tends to
Zero exponentially as r -+ CQ and thus represents a closed state (corre-
sponding to an elliptic Orbit in Bohr’s theory).

For any positive values of H’, a given by (75) will bepure imaginary.
The series (771,  which is like the series (79) for large r,  will now have a
sum that remains finite as r -+ a. Thus Xogiven  by (74) will now remain
Finite as r -+ co and will therefore be a permissible Solution of (73),
giving a wave function (CI  that tends to Zero according to the law r-1  as
r -+ CO. Hence  in addition to the discrete  set of negative energy-levels
(80), all positive energy-levels are allowed. The states  of positive

energy are not closed, since  for them the integral to in6nity r 1 x. i2 dr
does not converge. (These states correspoad to the hyperbolic Orbits
of Bohr’s theory.)

40. Selection  rules
If a dynamical System  is set up in a certain stationary statte, it will

remain in that stationary state so long as it is not acted upon by
outside forces.  Any atomic  System  in practice, however, frequently
gets acted upon by external electromagnetic  fields, under  whose
infiuence  it is liable to cease  to be in one stationary state and to make
a transition to another. The theory of such transitions will be de-
veloped in $8  44 and 45. A result  of this theory is that, to a high degree
of accuracy, transitions between two states cannot  occur under  the
influence  of electromagnetic  radiation if, in a Heisenberg representa-
tion with these two stationary states as two of the basic  states, the
matrix  element, referring to these two states, of the representative
of the total electric  displacement D of the System  vanishes.  New it
happens for many atomic  Systems that the great majority of the
matrix elements of D in a Heisenberg representation do vanish, and
hence  there are severe limitations on the possibilities for transitions.

’ The rules  that express these limitations are called selection  ruEes.
The idea of selection  rules tan  be refined by a more detailed

application  of the theory of $5  44 and 45, according to which
the matrix elements of the different Cartesian components of the
vector  D are associated with different states of polarization of the
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electromagnetic  radiation. The nature  of this association  is just what
one would get if one considered the matrix elements, or rather their
real parts, as the amplitudes of harmonic oscillators which  interact
with the field of radiation according to classical electrodynamics.

There is a general method for obtaining all selection rules, as
follows. Let us call  the constants of the motion which are diagonal in
the Heisenberg representation ar’s  and let .D  be one of the Cartesian
components of D. We must obtain an algebraic  equation connecting
D and the a’s which does not involve any dynamical variables other
than D and the 2s  and which is linear in D. Such an equation will
be of the form w
where the f?‘s  and g,.‘s  are functions  of the a’s  only. If this equation
is expressed in terms of representatives,  it gives us

01:

which Shows that (a’  ID  ld’) = 0 unless

This last equation, giving the connexion which must exist between
CY’  and an in Order  that (d/Dld’) may not vanish, constitutes the
selection rule, so far as the component D of D is concerned.

0u.r work on the harmonic oscillator in 9 34 provides an exampie
of a selection rule. Equation (8) is of the form (81) with +j for D and
EI  playing the part of the 01’8,  and it Shows that the matrix elements
(F I+ IriT”)  of +j all vanish except those for which H”=N’  = 6~.  The
conjugate complex of this result is that the matrix elements (H’ Iq  IH”>
of 7 all vanish except those for which H”-H’  = -6~. Since q is a
numerical  multiple of q--q,  its matrix elements (H’ IqlH”) all vanish
except those for which Hf’-Hf  = -j$w. If the harmonic oscillator
Garries an electric Charge, its electric displacement D will be pro-
portional to Q. The selection rule is then that only those transitions
tan take place in which the energy H changes  by a Single  quan-
turn tiw.

We shall  now obtain the selection rules for m, and k: for an electron
moving  in a central  field of forte.  The components. of electric dis-
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placement  arc here  proportional to the Cartesian  coordinates  x, y, x.
Taking  first  m,,  we have  that  rn, commutes  with x, or that

m,x--zm,  = 0.

This  is  an equation of the required  type (EU),  giving  us the selection
rule , Irm,-m  =B 0
for  the x-component  of the displacement.  Again,  from  equations
(23) we  have P-h [m,,xl] = Cm,, YJ = -4

m,2x-2m,xm,fxm~-Px = 0,or

which  is  also  of the type (81) and gives  us the selection  rule

or (mi-rnz-%)(me-mi+Tb)  = 0

for  the x-component of the displscement.  The selection  rule  for the
y-component is the same. Thus  our  selection  rules  for ma!  are that
in transitions associated with ra&ation  with a polarization correspondi9q
to an electric dipole in the x-direction, rn: cunnot  chunge,  while  in transi-
Gons associated with  a polarkation  corresponding to an electric dipole
in the x-direction or y-direction,  mp: must change  by -J+.

We tan determine  more  accurately  the state  of polarization of the
radiation associated  with  a transition  in  which  rni  changes  by -J& by
considering  the condition for the non-vanish$g  of matrix  elements
of x+iy and x -iy. We have

[m,,x+iy] = y-ix  = -i(x+iy)

0r m,(x+iy)---  (x+iy)(m,+W  = 0,

which  is again  of the type (81).  It gives
Im,--rni-4 = 0

as the condition that  (m~jx+iyJm~) shall  not vanish.  Similarly,

mZ;--rni+fi  = 0

is the condition that  (mzlx-iy  Im:> shall  not vanish.  Hence

(m;jx-iyjmL-4) =  0

or (m~JxJm~---6)  = i(m~~yJrn~--fi)  = (a+ib)kw”

say,  a, b, and CC) being  real. The conjugate  oomplex  of this  is

(m~--ALJx]m~) = -i(mi--6]ylmL>  = (a-ib)e-i~t

Thus  the vector &{{m;  ID  (m;--%>  + <mA-&/D  Im;)), which  determines
8895.67 M
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the state of Polarkation  of the radiation associated with transitions
for which rni  = rn; -4, has the following three components

~{<m~lxlm~-n>+(m~-Alxlm~>)
= g{(a+ib)ei”‘+(a-ib)e-qwl)  = a cos d-b sin wt,

~(~m~lvlma-~>+~m~-~lulm~>) (83)
= gi(-(a+ib)e”‘“‘+(a-ib)e-io3 = acsin  ot+b cos wt,

~{<m~[z~rn~-~)+(rn~-~~~~rn~)~  = 0. 1
From the form of these components we see that the associated radia-
tion moving in the z-direction  will be circularly polarized, that
moving in any direction in the q-plane will be linearly polarized in
this plane, and that moving in intermediate directions  will be
elliptically polarized. The direction of circular polarization for radia-
tion moving in the x-direction  will depend on whether w is positive
or negative, and this will depend on which of the two states rni or
mg  = mi--?i  has the greater energy.

We shall now determine the selection  rule for E. We have

[W+W,  z] = [m$  z]+[m$  21
= -ym% -m,y+xm,+m,x
= 2(m,x-m,  y+ifiz)

Similarly ,
and

= 2(m, x- ym,) = 2(xm,-m,  y).

[WC+%  x] = 2(ym,--m,  4

[W+fi), Y] = 2(m,+xm,).
Hence

[w+fi),  Cw+a  4-j
= qw+Jq, my x-m, y-f-ifiz]

= 2m,[k(E+~),x]-2m,[k(k+1Ti),y]+2ifi[k(E+~),  ~1 *
= 4m,(ym,----m,z)-4m,(m,z--xmz)+2(k(k+fi)x-xE(k+fi))  -
= 4(mzx+riEy  y+m,z)m,-4(m!$+mi+ma)z+

+ 2w+w z-zk(k+fi)).
From (22) m,x+m,  y+m,x = 0 P)
and hence

[w+fi),  Pw+fo, Zl] = -2{W+~)~+~E(~+~)),
which gives

IC2(k+n)32_2k(E+fi)xE(E+n)+xE2(E+n)2-.

-21i2Ek(l+n)z+xk(k+n)E  = 0.  (85)
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Similar equations hold for x and y.  These equations are of the re-
quired type (81), and give us the selection rule

k’2(k’+q2-2k’(k’+fi)v(~+fi)+~yY+~)~-

-2fi%‘(E’+?i)-2Pk”(k”+n)  =  0 ,
which reduces to

(k’+E”+2n)(k’+E”)(k’-k”+n)(k’-E”-fi)  = 0.

A transition tan take place  between two states k’  and k?’  only if one
of these four factors vanishes.

Now the first of the factors, (Ic’+lc”+ 2fi), tan  never vanish, since
the eigenvalues of k are all positive or Zero. The second,  (E’+V),  tan
vanish only if k’  = 0 and k”  = 0. But transitions between two states
with these values for Ic cannot occur on account of other selection
rules, as may be seen from the following argument. If two states
(labelled  respectively with a Single Prime and a double Prime)  arc
such that k’ = 0 and k;”  = 0, then from (41) and the corresponding
results for m, and my,  rn; = mk  = rni  = 0 and rni = rni = rni  = 0.
The selection rule for m,  now Shows  that the matrix elements  of
x and y referring to the two states must vanish, as the value of m,
does not Change during  the transition, and the similar selection rule
for m, or rny  Shows  that the matrix element of z also vanishes. Thus
transitions between the two states cannot occur. Our selection rule
for ?c now reduces to

(k’-k”+h)(k’-k”-4)  = 0,

showing that k mzcst  chcLnge  by -@. This selection rule may be written

p-2jypyp-$2  = 0,

and since this is the condition that a matrix element (Er ~x~F’>  shall
not vanish, we get the equation

or

k2z- 2kzk+zk2-fi2z  = 0

[k [k,  z]] = -2, (86)
a result which could not easily be obtained in a more direct way.

As a final example we shall  obtain the selection rule for the magni-
tude K of the total angular momentum  M of a general atomic  System.
Let x, y,  z be the coordinates  of one of the electrons.  We must obtain
the condition that the (Kr,  K”) matrix element of X, y,  or x shall  not
vanish. This is evidently the Same as the condition  that the (Kr, K”)
matrix element of h,,  h,,  or & shall  not vanish, where &, h,,  and $
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are any three independent linear functions of x, y,  and x with numeri-
cal coefficients, or more  generally with any coefficients that commute
with K and are thus represented by matrices  which  are diagonal with
respect to K. Let

&, = M,x+M,  y+JQ,
h, = M,z-M,y-iKx,
Av = M,x-M,x-ifiy,
AZ  =

We have
M, y-M,x-ifix.

= 1 (M, MV-M, M,-ifiM,)x  = 0 (87)

from (29). Thus &,,  )I,,  and ATare not linearly independent functions
of x, y, and z. Any two of them, however, together with AO are three
linearly independent functions of x, y, and x and may be taken as the
above h,,  X,,  X,,  since  the coefficients M,, M,, M,  all commute with K.
Our Problem  thus reduces  to finding the condition that the (K’, K”)
matrix elements of h,,  hz,  AU,  and h,  shall not vanish. The physical
meanings of these h’s  are that X, is proportional to the component of
the vector (x, y, x)  in the direction  of the vector M, and AZ, &,,  Xz are
proportional to the Cartesian components of the component of (x, y, x)
perpendicular  to M.

Since  &,  is a scalar  it must commute with K. It follows that only
the diagonal elements (K’ /h,lK’) of h, tan  differ from Zero, so the
selection rule is that K cannot  Change  so far as h,  is concerned. Apply-
ing (30) to the vector hz,  &,,  h,,  we have

PfAl  = 4l9 [&, hy]  = -h,, [M,, &] = 0.
These relations between M, and h,,  X,,  h,  are of exactly the same form
as the relations (23),  (24) between m, and x,  y, x, and also (87) is of
the same form as (84). The dynamical variables &.,  h,,  AZ  thus have the
Same properties relative to the angular momentum  M as x, y, x have
relative to m. The deduction of the selection rule for lc  when the
electric displacement is proportional to (x, y, x)  tan therefore be taken
over and applied to the selection rule for K when the electric displace-
ment is proportional to (h,, h,,  h,). We find in this way that, so far as
&.,  h,,  h,  are concerned, the selection rule for K is that it must Change
by 33.

Collecting results, we have as the selection rule for K that it must
Change by 0 or  -J$. We have considered the electric displacement
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produced  by only one of the electrons,  but the same selection  rule
must hold for each electron and thus also for the total electricjlis-
placement .

41. The Zeeman  effect for the hydrogen atorn
We shall  now consider the System  of a hydrogen atom in a uniform

magnetic field. The Hamiltonian (5’7) with V = -ez/r, which  describes
the hydrogen atom in no external field, gets modified by the magnetic
field, the modification, according to classical mechanics, consisting
in the replacement of the components of momentum, pz,  pV, p3,, by
px+e/c.A,, p,+e/c.A,,  %+e/c .A,, where A,,  A,,  A,  arc the com-
ponents of the vector potential describing the field. For a, uniform
field of magnitude J+  in the direction of the x-axis we may tske
A,  = -Q&y,  A,  = +&x, A, = 0. The classical Hamiltonian will
then be

This classical Hamiltonian may be taken over into the quantum
theory if we add on to it a ferm giving the effect of the spin of the
electron. According to experimental evidente and according to the
theory of Chapter XI, the electron has a magnetic moment - efi/2mc.  G,
where Q is the spin vector of 0 37. The energy of this magnetic moment
in the magnetic field will be e!i3/2mc.  0,.  Thus the total quantum
Hamiltonian will be

H ’z-
2m px((

There ought strictly to be other terms  in this Hamiltonisn giving the
interaction of the magnetic moment of the electron with  the electric
field of the nucleus  of the atom, but this effect is small, of the same
Order  of magnitude as the correction one gets by taking relativistic
mechanics into account, and will be neglected here. It will be taken
into account in the relativistic  theory of the electron given in
Chapter XI.

If the magnetic field is not too large, we tan neglect terms involving
#2,  so that the Hamiltonian (88) reduces  to

(89)
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The extra terms due to the magnetic field are now eJ4/2mc. (mz+hz).
But these extra terms commute  with the total Hamiltonian and arc
thus constants of the motion. This makes the Problem  very easy.
The stationary states of the system, i.e. the eigenstates of the Hamil-
tonian (89),  will be those eigenstates of the Hamiltonian for no field
that are simultaneously eigenstates of the observables m, and Ob,  or
at least of the one observrtble  rn,+fia,,  and the energy-levels of the
System  will be those for the System  with no field, given by (80) if
one considers only closed states, increased by an eigenvalue of
e#/2mc.  (m,+?b,).  Thus stationary states of the System  with no
field for which rn8 has the numerical value rnl,  an integral multiple
of 5, and for which also O*  has the numerical value 0; = j- 1, will still
be stationary states when the field is applied. Their energy will be
increased by an amount consisting of the sum of two Parts,  a part
e&/2mc.m~ arising from the orbital motion, which part may be con-
sidered as due to an orbital magnetic moment -emi/2mc,  and a part
e3#/2mc.  ha;  arising from the Spin. The ratio of the orbital magnetic
moment to the orbital angular momentum  rnz  is -e/2mc,  which is
half the ratio of the spin magnetic moment to the spin angular
momentum. This fact is sometimes referred to as the magnetic
anomaly of the Spin.

Since  the energy-levels now involve m,, the selection  rule for m,
obtained in the preceding section  becomes  capable of direct  com-
parison with experiment. We take a Heisenberg representation in
which, among other constants of the motion, m, and oz are diagonal.
The selection  rule for m, now requires m, to Change by &,  0, or -4,
while u,,  since  it commutes  with the electric displacement, will not
Change at all. Thus the energy differente between the two states
taking part in the transition process will differ by an amount
e?iJ+/2mc,  0,  or -eW/2mc  from  its value for no magnetic field.
Hence,  from  Bohr’s frequency condition,  the frequency of the
associated electromagnetic  radiation  will differ by eJ$/&rnc,  0, or
-eJ#/hmc  from  that for no magnetic field. This means that each
specfrd  he for no magnetic field gets Split  up by the field into three
components. If one considers radiation moving in the x-clirection,
then from (83) the two outer components will be circularly polarized,
while  the central  undisplaced one will be of zero intensity. These
reaults are in agreement with experiment and also with the classical
theory of the Zeeman effect.

i
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42. General remarks
IN the preceding chapter  exact treatments were  given of some simple
dynamical Systems in the quantum  theory. Most quantum  Problems,
however, cannot be solved exactly with the present resources of .
mathematics, as they lead to equations whose solutions cannot be
expressed in finite terms with  the help of the ordinary functions  of
analysis. For such Problems  one tan  often  use a perturbation method.
This consists in splitting up the Hamiltonian into two park, one of
which must be simple and the other small. The first part may then
be considered as the Hamiltonian of a simplified or unperturbed<
System, which tan  be dealt with exactly, and the adclition of the
second will then require small corrections, of the nature of a perturba-
tion, in the Solution for the unperturbed System. The requirement
that the first part shall be simple requires in practice that it shall not
involve the time explicitly. If the second part contains a small

i numerical  factor  E,  we tan  obtain the solution of our equations for
the perturbed System  in the form of a power series in E, which, pro-
vided it converges, will give the answer  to our  Problem  with any
desired accuracy. Even when the series does not converge, the first
approximation obtained by means of it is usually fairly accurate.

There are two distincf methods in perturbation theory. In one of
these the perturbation is considered as causing a modzjkation  of the
states of motion of the unperturbed System. In the other we do nof
consider any modification  to be made in the states of the unperturbed
System,  but we suppose that the perturbed System,  instead of remain-
ing permanently in one of these states, is continually changing  from
one to another, or wmking  transitions, under  the influence of the
perturbation. Which  method is to be used in any particular  case
depends on the nature of the Problem  to be solved. The first method
is useful usually only when the perturbing energy (the correction in the
Hamiltonian for the undisturbed System)  does not involve the time
explicitly, and is then applied to the stationary states. It tan be used
for calculating things that do not refer to any definite time, such as
the energy-levels of the stationary states of the perturbed System,  or,
in the case  of collision  Problems, the probability of stattering  through
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a given angle. The second method must, on the other hand, be used
for solving all Problems  involving a consideration of time, such as
those about the transient phenomena that occur when the perturba-
tion is suddenly applied, or more generally Problems  in which the
perturbation varies with the time in any way (i.e. in which the per-
turbing energy involves the time explicitly). Again, this second
method must be used in collision  Problems, even though the per-
turbing energy does not here involve the time explicitly, if one
wishes to calculate absorption and emission probabilities, since  these
probabilities, unlike a stattering  probability, cannot be defined with-
out reference to a state of affairs that varies with the time.

One tan summarize the distinctive  features of the two methods by
saying that, with the first method, one compares the stationary states
of the perturbed systsm with those of the unperturbed System; with
the second method one takes a stationary state of the unperturbed
system and sees how it varies with time under  the influence of the
perturbation.

43. The Change  in the energy-levels caused  by a perturbation
The first  of the above-mentioned methods will now be applied to

the calculation of the changes  in the energy-levels of a System  caused
by a perturbation. We assume the perturbing energy, like the Hamil-
tonian for the unperturbed System, not to involve the time explicitly.
Our Problem  has a meaning, of course, only provided the energy-levels
of the unperturbed System  are discrete  and the differentes between
them are large compared with the changes  in them caused  by the
perfurbation. This circumstance results in the treatment of perturba-
tion Problems  by the first method having some different features
according to whether the energy-levels of the unperturbed System  are
discrete  or continuous.

Let the Hamiltonian of the perturbed System  be

H = E+K (1)
E being the Hamiltonian of the unperturbed System  and V the small
perturbing energy. By hypothesis each  eigenvalue H’ of H lies very
close to one and only one eigenvalue E’ of E. We shall use the same
number of primes to specify any eigenvalue of H and the eigenvalue
of E to which it lies very close. Thus we shall have H” differing from
E” by a small quantity of Order  V and differing from  E’ by a quantity
that is not small  unless E’ = E”. We must now take care always to
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use different numbers of primes to specify  eigenvalues of H and E
which we do not want to lie very close  together.

To obtain the eigenvalues of H, we have to solve the equation

WO = H’IH’)
or (H’--E)]H’)  = VIH’). (2)
Let IO)  be an eigenket of E belonging to the eigenvalue E’ and
suppose the IH’)  and H’ that satisfy (2) to differ from IO}  and E’
only by small  quantities and to be expressed as

10  = IO>+  IV+ FD+-->
Hf = E’+a,+a,+..., 1 (3)

where 1 1 >  and a, are of the first Order of smallness (i.e. the same  Order
as V), /2>  and a2 are of the second Order, and so on. Substituting
these expressions in (2),  we obtain

{Ef-E+al+aa+~..)(lo)f  IV+  12>+...)  = V(lo>+  IO+-•}.
If we now separate the terms of Zero  Order, of the first  Order, of the
second Order,  and so on, we get the following set of equations,

(E’-E)IO) = 0,

CE’-JW)+a,P>  = VP>,

1

(4
(E’-E)l2)+a,ll)+a,lO)  = VP>,

. . . . . . . . .
The first of these equations tells us, what we have already assumed,
that IO>  is an eigenket of E belonging to the eigenvalue E’. The others
enable us to calculate the various corrections Il), 12),...,  al,a,,... .

For the further  discussion  of these equations it is convenient to
introduce a representation in which E is diagonal, i.e. a Heisenberg
representation for the unperturbed System, and to take E itself as
one of the observables whose eigenvalues label the representatives.
Let the others, in the event of others being necessary, as is the case
when there is more than one eigenstate of E belonging to any eigen-
value, be called Iß’s.  A basic  bra is then (E”/3”  1.  Since  IO)  is an
eigenket of E belonging to the eigenvalue E’, we have

@“P”lo)  = &pE,f@“), (5)
wheref(/3”)  is some function  of the variables p”. With the help of this
result the second of equations (GI), written in terms of representatives,
becomes

(E’-E”)(E”P”Il)+~,8~“~f(rßn)  = B (B”j”IV~IE’/3’)f(jg’). (6),
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Putting E” = E’ here, we get

Equation (7) is of the form of the Standard equation in the theory
of eigenvalues, so far as the variables /3’  are concerned. It Shows  that
the various possible values for a, are the eigenvalues of the matrix
<E’/l”IVIE’f3’).  T his matrix is a part of the representative of the
perturbing energy in the Heisenberg representation for the unper-
turbed System, namely, the part consisting of those elements that
refer to the same unperturbed energy-level E’ for their row and
column. Esch of these values for a, gives, to the first Order, an energy-
level of the perturbed System  lying close to the energy-level E’ of the
unperturbed System.?  There may thus be several energy-levels of the
perturbed System  lying close to the one energy-level E’ of the unper-
turbed System, their number being anything not exceeding the
number of independent states of the unperturbed System  belonging
to the energy-level E’. In this way the perturbation may Cause a
Separation or  partial Separation of the energy-levels that coincide
at E’ for the unperturbed System.

Equation (7) also determines, to the zero Order,  the representatives
(IG”/?  IO)  of the stationary states of the perturbed System  belonging
to energy-levels lying close to E’, any solutionf(fl’)  of (7) substituted
in (5) giving one such representative. Esch of these stationary states
of the perturbed System  approximates to one of the stationary states
of the unperturbed System,  but the converse,  that each  stationary
state of the unperturbed System  approximates to one of the stationary
states of the perturbed System, is not true, since  the general
stationary state of the unperturbed System  belonging to the energy-
level E’ is represented by the right-hand side of (5) with an arbitrary
function f(p). The Problem  of finding which  stationary states of
the unperturbed System  approximate to stationary states of the
perturbed System, i.e. the Problem  of finding the solutions f@‘> of
(7),  corresponds to the Problem  of ‘secular perturbations’ in classical
mechanics. It should be noted that the above results are indepen-
dent of the values of all those matrix elements of the perturbing

i To distinguish these energy-levels one from another we  should require some
more  elaborate  notation, since  according to the present notation they must all be
specified by the same  number of primes, namely  by the number of primes specifying
the energy-level of the unperturbed System  from which  they arise.  For our present
purposes,  however, this more  elaborate  notation is not required.
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energy which refer to two different energy-levels  of the unperturbed
System.

Let us see what the above results become  in the specially simple case
when there is only one stationary state of the unperturbed sysfem
belonging to each energy-1evel.t  In this case  E alone fixes the repre-
sentation, no 13’s being required. The sum in (7) now reduces to a
Single term and we get

CcI = (E’IVIE’). (8)
There is only one energy-level of the perturbed System  lying  close  to
any energy-level of the unperturbed System  and the Change  in energy
is equal,  in the @st  Order,  to the corresponding diagonal element of the
perturbing energy in the Heisenberg representution  for the unperturbed
System,  or  to the average  value of the perturbing energy for the correspond-
ing unperturbed state. The latter  formulation of the result is the Same
as in classical mechanics when the unperturbed System  is multiply
periodic .

We shall proceed 60 calculate the second-Order correction a2 in
the energy-level for fhe case  when the unperturbed System  is non-I
degenerate. Equation (5) for this case  reads

(E”IO) = &‘E’,

with neglect of an unimportant numerical  factor,  and equation (6)
reads (E’-E”)(E”p>+a,8~.$y  = (E”p$!r).

This gives us the value of (E” J 1) when E” # E’, namely

(E”I1> =
(E’IVIE’)

E’ E” .- (9)

The third of equations (4),  written  in terms of representatives,
becomes

(E’-E”)<E”12)+a,(E”Il)+a,~&‘E’  = 2 <E’IVIE”)(E”~1).z”
Putting E” = E’ here,  we gef

al@‘Il)+a2 = & GVV’XE”l~),

which  reduces, with the help of .(8), fo

a2 =~~~,(E’IV~E’}(E’11).

t A System  with only one stationary state belonging to each  energy-level is  often
cal led  non-degenerute  and one with  two or  more  s tat ionary  s tates  be longing  to  a n
energy-level is called degenerste,  although  these  words arc  not very appropriate from
the modern Point  of view.
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Substituting for (23” 1 l> from (9),  we obtain finally

c
(E’IVIE”)(E”jV~E’)

a2=  - EI-E” >
E"#E'

giving for the total energy Change  to the second Order

a,+a,  = (E’IVIE’)+  2  ‘E’IVI~)J~~IvlE’?,
E"#E

The method may be developed for the calculation of the higher
approximations if required. General recurrence formulas giving the
nth Order  corrections  in terms of those of lower Order  have been
obtained by Born, Heisenberg, and Jordan.?

44. The perturbation considered as causing transitions
We shall now consider the second of the two perturbation methods

mentioned in lj  42. We suppose again that we have an unperturbed
System  governed by a Hamiltonian E which does not involve the
time explicitly, and a perturbing energy ‘V which tan now be an
arbitrary function of the time. The Hamiltonian for the perturbed
System  is again H = E+V. For the present method it does not
make any essential differente  whether the energy-levels of the
unperturbed System, i.e. the eigenvalues of E, form a discrete or
continuous set. We shall, however, take the discrete case,  for
definiteness. We shall again work with a Heisenberg representation
for the unperturbed System, but as there will now be no advantage in
taking E itself as one of the observables whose eigenvalues label the
representatives,  we shall suppose we have a general set of 2s  to label
the representatives.

Let us suppose that at the initial time t, the System  is in a state for
which the CX’S  certainly have the values CY’.  The ket corresponding to
this state is the basic  ket 1~‘). If there were no perturbation, i.e. if the
Hamiltonian were E, this state would be stationary. The perturba-
tion Causes the state to Change. At time t the ket corresponding to the
state in Schrödinger’s picture will be T 1 a’),  according to equation (1)
of 5 27. The probability of the a’s  then having the values 0~” is

P(&“)  = I(a”lTla’>l2. (11)
For (11“  # c11’,  P(a’a”)  is the probability of a transition taking place
from state a’ to state ~2’  during  the time interval t, -+ t, while P(&&)

t 2.  f. Physik, 35 (19259, 565.

,



§ 44 PERTURBATION CAUSINC TRANSITIONS 173

is the probability of no transition taking place at all. The sum of
P(a’a”) for all O? is, of course, unity.

Let us now suppose that initially the System,  instead  of being
certainly in the state CX’, is in one or other of various states 01’ with
the probability Pa,  for each.  The Gibbs density corresponding to this
distribution is, according to (68) of 5 33

p = c ja’>P&’  1. (12)
ff’

At time t, each  ket Ia’) will have changed to Tl@‘) and each  bra (a’ 1
to (cu’[T, so p will have changed to

pt = C T(ar')P& fi?'. (13)
01'

The probability of the CX’S then having the values QL”  will be, Biom
(73) of 5 33, (cx”]pt~a”) = 2 (~HITJ~‘)P,~(ol’l~la”>

a*
= 2 Pa’  P(cx’a”) (14)

with the help of (11). This result expresses that the probability of
the System  being in the state ~2’ at time t is the sum of the probabilities
of the System  being initially in any state 01’ # an,  and making a transi-
tion from state 01’ to state O?  and the probability of its being initially
in the state.$ and making no transition. Thus the various transition
probabilities act independently of one another, according to the
ordinary laws of probability.

The whole Problem  of calculating transitions thus reduces  to the
determination of the probability amplitudes (CU”  1 T Ia’). These tan  be
worked out from the differential equation for T, equation (6) of $27, or

%dT,‘dt  = HT = (E+V)T. (15)

. The calculation tan be simplified by working with

T*  = &N-tol/fiT. (16)

We have i&dT*/dt  = eiE(t-to)jfi(  - ET+% dT/dt)

= &W-lo)lfiVT  = V*T* > (17)

where V* = eiE(t-to)/~Ve-iE(t-I,llfL 1 (18)

i.e. V* is the result of applying a certain unitary transformation to V.
Equation (17)  is of a more convenient form than (15),  because  (17)
makes the Change in T*  depend entirely on the perturbation V, and
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for v = 0 it would make T* equal its initial value, namely unity.
We have from  (16)

(CX”(T”lLX’) = ,&W-lo)/fi(  a” 1 T  1 a’ ) ,

so that P(a’afl)  = I(anIT*Ia’>12, (19)

showing that T*  and T are equally good for determining transition
probabilities.

Our work up to the present has been exact. We now assume V is
a small quantity of the first Order  and express T*  in the form

T’=  l+Tf+T;+..., (20)

where TT is of the first Order, 5!‘: is of the second, and so on. Substi-
tuting (20) into (17) and equating terms of equal Order,  we get

i!idTT/dt  = V”,

ifidT;/dt  = V*T;, (21)
. . . . . . 1

From the first of these equations we obtain
t

Ti = -in--1  V*(t’) dt’,s (22)
to

fiom the second we obtain

T,*  = ---#i-2 i V*(t’) dt’ j V*(f) dt”, (23)
to to

and so on. For many practical Problems  it is sufficiently accurate to
retain only the term Tz, which  gives for the transition probability
P(&d’) with cy”  # cc’

P(a’d) = 6-2  (a”l i V*(t’) dt’la’)
I to I

2

= n-2 (2 1 V*(t’) ja’)  dt’ 2.
l 1

(24)

We obtain in this way the transition probability to the second Order
of accuracy. The result depends only on the matrix element
(a”lV*(t’)Ia’)  of V*(t’) referring to the two states concerned, with t’
going from t,  to t. Since  V* is real, like V,

+qv*(t’)~a’>  = ~‘Iv*(t’)ldr>
and hence P(&!“)  = P(c&‘)

to the second Order  of accuracy.
(25)
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Sometimes one is interested in a transition Q’  -+ CY”  such that the
matrix element (a” 1 V* [ ~2) vanishes, or is small compared with ofher
matrix elements of V*. It is then necessary to work to a higher
accuracy. If we retain only the terms Tf  and Tz, we get, for 0~” # a’,

P(o!‘a”)  = n-2 / <ar”j  v*(t’) Ia’} dt’-
I

t0

-ifi-1  2
‘3”” +  a’  d

1  (a”,V*(t’),,“‘)  dt’ j’<a”‘,V*(t’),n’>  &“i2.  (26)
’ to to

The terms (Y”’  = 01’ and ~4”  = (x” are omitted from the sum since  they
are small  compared with other terms of the sum, on account of the
smallness  of (01” 1 V* 101’). To interpret  the result (26),  we may suppose
that the term t

s
(a”~V*(t’)~a’>  dt’ (27)

to
gives rise to a transition directly  fiom state a’ to state 2,  while  the
ferm

-&--1 / (d’l  V*(t’) Ia”‘)  dt’ i’  (a”, V*(f) (cJ>  dt” (533)
t o to

gives rise  fo a transition from  sfate 01’ to state OP’,  followed by a
transition from  state 01’ to state a”. The state 01”’ is called  an ‘Wer-
mediate  staie in this interpretation.  We must add the term  (27) to the
various ferms  (28) corresponding fo different intermediate  sfafes
and then  take the Square  of the modulus of the sum, which means
that th8r8  is interference between the different transition proc8sses-
the direct  one and those involving intermediafe  states-and  one can-
nof give a meaning to the probability for one of these  processes  by
itself. E’or  each  of these  processes,  however, there  is a probability
amplitude.  If one carries  out the perturbation method to a higher
degree of accuracy, one obtains a result which tan  be interpreted
similarly, with the help of more complicated transition processes
involving a succession  of intermediate states.

45. Application  to radiation
In the preceding section  a general theory of the perturbation of an

atomic  System  was developed, in which the perturbing  energy could
vary with the time in an arbitrary way. A perturbation of this
kind tan  be realized in practice by allowing incident electromagnetic
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radiation to fall on the System. Let us see what our result (24) reduces
to in this case.

If we neglect the effects of the magnetic  field of the incident radia-
tion, and if we further  assume that the wave-lengths of the harmonic
components of this radiation are all large compared with the dimen-
sions of the atomic  System,  then the perturbing energy is simply the
scalar  product

V = W’,  e), (29)

where D is the total electric displacement of the System  and 42 is
the electric forte of the incident radiation. We suppose e to be a
given function  of the time. If we take for simplicity the case  when
the incident radiation is plane polarized with its electric vector in
a certain direction  and let D denote the Cartesian component of D
in this direction, the expression (29) for V reduces to the ordinary
product V=De,

where e is the magnitude of the vector &!.  The matrix elements of
V are (a"lVIa'>  = (cx"~D~a')~,

since  e is a number. The matrix element (CX”  1 D 10~‘)  is independent
oft. From (18)

<a”IV*(t)la’)  = (~“lDlor’)eicEl-E~~~~/~~(~),
and hence  the expression (24) for the transition probability becomes

If the incident radiation during  the time interval t, to t is resolved
into its Fourier components, the energy crossing unit area per unit
frequency range about the frequency v will be, according to classical
electrodynamics, t

Ev  2;
IJ

2
=- @W-to)&  (t’ ) dt’ . (31)

to
Comparing this with (30),  we obtain

P(&“) = 2rr~-Yi-21(a”lDl01’)1~E,, (32)
where v = IE”-E’I/h. (33)

From this result we see in the fnst  place  that the transition proba-
bility depends only on that Fourier component of the incident radia-
tion whose frequency v is connected with  the Change of energy by (33).
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This gives us Bohr’8  Frequency Condition  and Shows  how the ideas
of Bohr’s atomic theory, which was the forerunner  of quantum
mechanics, tan be fifted in with quantum  meohanics.

The present elementary theory does not tell us anything  about the
energy of the field of radiation. It would be reasonable to assume,
though, that the energy absorbed or liberated by the atomic System
in the transition process Comes from or goes into the component of
the radiation with frequency  v given by (33). This  assumption will
be justified by the more complete theory of radiation given in
Chapter X. The result (32) is then to be interpreted  as the proba-
bility of the System, if initially in the state of lower energy, absorb-
ing  radiation and being  carried  to the upper state, and if initially in
the upper state, being stimuZated  by the incident  radiation to emit
and fall to the lower state. The present theory does not account for
the experimental fact that the System, if in the upper state with no
incident radiation, tan emit spontaneously and fall to the lower state,
but this also will be accounted for by the more complete theory of
Chapter X.

The existente of the phenomenon of stimulated emission was in-
ferred by Einsteint  long before the discovery of quantum  mechanics,
from a consideration of statistical equilibrium between atoms and a
field of black-body radiation satisfying Planck’s law. Einstein showed
that the transition probability for stimulated emission must equal
that for absorption between the Same pair of states, in agreement
with the present quantum  theory, and deduced also a relation con-
necting this transition probability with that for spontaneous emission,
which relation is in agreement with the theory of Chapter X.

The matrix element (a”lDja’)~  in (32) plays the part of the ampli-
tude of one of the Fourier components of D in the classical  theory of
a multiplybperiodic  System  interacting with radiation. In fact it was
the idea of replacing classical Fourier components by matrix  elements
which led Heisenberg to the discovery of quantum  mechanics in 1925.
Heisenberg assumed that the formulas describing  the interaction with
radiation of a System  in the quantum  theory tan  be obtsined from
the classical formulas by substituting for the Fourier components of
the total electric displacement of the System  the corresponding matrix
elements. According to this assumption applied to spontaneous emis-
sion,  a System  having an electric moment D will, when  in the state

j’  Einstein, Phys.  Zeih  18 (19I7),  121.
3 5 9 5 . 8 7 N
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(Y‘, spontaneously emit radiation of frequency v = (E'- E")/h,  where
E” is an energy-level, less than E', of some state an,  at the rate

4 (27q
3 -+<~“lDI~‘)12~ (34)

The distribution of this radiation over the different directions of
emission and its state of polarization for each direction will be the
Same as that for a classical electric dipole of moment equal to the
real part of (a” IDla’>. To interpret this rate of emission of radiant
energy as a transition probability, we must divide it by the quantum
of energy of this frequency, namely hv, and call it the probability per
unit time of this quantum being spontaneously emitted, with the
atomic  System  simultaneously dropping to the state a” of lower
energy. These assumptions of Heisenberg are justified by the present
radiation theory, supplemented  by the spontaneous transition theory
of Chapter X.

46. Transitions caused  by a perturbation independent of the
time

The perturbation method of 3 44 is still valid when the perturbing
energy V does not involve the time t explicitly. Since the total
Hamiltonian H in this case  does not involve t explicitly, we could
now, if desired, deal with the System by the perturbation method of
$ 43 and find its stationary states. Whether this method would be
oonvenient or not would depend on what we want to find out about
the System. If what we have to calculate makes an explicit reference
to the time, e.g. if we have to calculate the probability of the System
being in a certain state at one time when we are given that it is in a
certain state at another time, the method of $44 would be the more
convenient one.

Let us see what the result (24) for the transition probability becomes
when P does not involve t explicitly and let us take t, = 0 to simplify
the writing. The matrix element (a”lVla’) is now independent of t,
and from (18) (d’~V*(t’)~c%‘)  = (d’~v~a’)e~~‘-~3”i, (35)ts

0

(a)v*(t’)Id)  dt’ = (d’]Vla’>  $,y--;;jj;,
provided E" + E'. Thus the transition probability (24) becomes

p(a’a”)  = j(~“1vl~‘)12[e~(~“-E3”‘“- l][e-i(E’-E)t/A-  l]/(E”-E’)2

= 2~(&'~V~a')~2[b--cos((E"-E')t/fi~]/(E"-E')2. (36)
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If E” differs appreciably from E’ this transition probability is small
and remains so for all values of t. This result is required by the law
of the conservation of energy. The total energy H is constant and
hence  the proper-energy E (i.e. the energy with neglect of the part
V due to the perturbation), being approximately equal  to H, must
be approximately constant. This means that if E initially has the
numerical value E’, at any later time there must be only a small
probability of its having a numerical value differing considerably
from  E’.

On the other hand, when the initial state CL’ is such that there exists
another state CX”  having the same or very nearly the Same proper-
energy E, the probability of a transition to the final  state All” may be
quite large. The case  of physical interest now is that in which there
is a continuous range of final states CL”  having a continuous range of
proper-energy levels E” passing  through the value E’ of the proper-
energy of the initial state. The initial state must not be one of the
continuous range of final states, but may be either a separate discrete
state or one of another continuous range of states. We shall  now have,
remembering the rules of 6 18 for the interpretation of probability
amplitudes tith continuous ranges  of states, that, with P(cY.‘oI”)
having the value (36),  the probability of a transition to a final state
within the small range a” to cll”+&”  will be P(cL’cx”)  da” if the initial
state a’ is discrete  and will be proportional to this quantity if 01’ is
one of a continuous range.

We may suppose that the OL’S describing the final state consist of
E together with a number of other dynamical variables 8, so that we
have a representation like that of 3 43 for the degenerate case. (The
Iß’s,  however, need have no meaning for the initial state CC’.)  We shall
suppose for definiteness that the /3’s  have only discrete  eigenvalues.
The  total probability of a transition to a final state CX”  for which the
/3’s  have the values ,8”  and E has any  value (there will be a strong
probability of its having a val.ue near the initial value E’) will now
be (or be proportional to)

= 2 co  I(~~~vl~‘)l”[l-cos((E”
s

- E’)t/fij]/( E”- E’)2  dE” (37)
-to
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if one makes the Substitution (E”-E’)t/$  = z. For large values of t

this reduces  to

ztn-lI(E’p”lvla’)I”  r [l-cosx]/x2  dx
-UJ

= 27&-l~(E’B”~V~cY’)~? (38)

Thus the total probability up to time t of a transition to a final state
for which the /3’s  have the values /3” is proportional to t. There is
therefore a definite probability coe$icient,  or probability per unit time,
for the transition process under  consideration, having  the value

27+-ll(EB”~V~CX’)~2. (39)
It is proportional to the Square of the modulus of the matrix element,
associated with this transition, of the perturbing energy.

If the matrix element (E’/3”  1 V Ia’) is small compared with other
matrix elements of V,  we must work with the more accurate formula
(26). We have from (35)

j (o!” 1 V*(t’)  Ia”‘)  dt’ / (a”‘l  v*(t”) ld) dt”

0 0

= (a"l Vla")(a"lVla')  S &E"-E"')tqW dt' f ei@P"-E')f"/fi dt"

0 0

+” 1v 1a”> 6”’  1 v Ia’>= --i( E”-  E’)/fi st (e+C.E’)6’/fi  _ e~(ELE”~/n)  dt’ .
For E’ close to E’, only the first term in the integrand here gives rise
to a transition probability of physical importante and the second
term may be discarded. Using this result in (26) we get
P(a'a')

= 2 (a’lvla’)-
I c

<fqqa”)(a”IVla’)  2  l-cos((E”-E’)l/?i)- - - - -
IX”  # cd a!”

E”-E’ (fl-E’)2  ’
.

which replaces (36). Proceeding as before, we obtain for the transi-
tion probability per unit time to a final state for which the /3’s  have
the values /3” and E has a value close to its initial value E'

This formula Shows  how intermediate states, differing from the initial
state and final state, play a role in the determination of a probability
coefficient .

t
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In Order  that the approximations used in deriving (39) and (40) may
be valid, the time t must be not too small and not too large. It must
be large compared with the periods  of the atomic System  in Order that
the approximate evaluation of the integral (37) leading  to the result
(38) may be valid, while it must not be excessively large or else the
general formula (24) or (26) will break down. In fact one could make
the probability (38) greater than unity by taking t large enough. The
upper limit to t is fixed by the condition that the probability (24) or
(26),  or t times (39) or (40),  must be small compared with  unity. There
is no difficulty in t satisfying both these conditions simultaneously
provided the perturbing energy V is sufficiently small.

47. The anomalous Zeeman effect
One of the simplest examples of the perturbation method of $43

is the calculation of the first-Order  Change in the energy-levels of an
atom caused  by a uniform magnetic  field. The Problem  of a hydrogen
atom in a uniform magnetic  field has already been dealt with  in $41
and was so simple that perturbation theory was unnecessary. The
case  of a general atom is not much  more complicated when we make
a few approximations such that we tan  set up a simple model for the
atom.

We first of all consider the atom in the absence  of the magnetic
field and look for constants of the motion or quantities that are
approximately constants of the motion. The total angular momen-
turn of the atom, the vector j say, is certainly a constantl  of the
motion. This angular momentum  may be regarded as the sum of two
Parts,  the total orbital angular momentum  of all the electrons,  1 say,
and the total spin angular momentum, s say. Thus we  have j = l+~.
Now the effect of the spin magnetic  moments on the motion of the
electrons  is small compared with the effect of the Coulomb forces and
may be neglected as a first approximation. With this approximation
the spin angular momentum  of each  electron is a constant  of the
motion, there being no forces  tending to Change ita orientation. Thus
s, and hence  also 1, will be constants of the motion. The magnitudes,
Z, s,  and j say, of 1, s, and j will be given by

z+*fi = (EZ+z;+e+i)n2)‘,

s+Q?i  = (8~+s;+s~+gP)*,
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corresponding to equation (39) of 5 36. They commute  with each
other, and ffrom  (47) of Q 36 we see that with given numerical values
for Z and s the possible numerical values for j are

z+s, z+s-6,  . . . . IZ-SI.
Let us consider a stationary state for which Z, s,  and j have definite

numerical values in agreement with the above scheme. The energy
of this state will depend on Z, but one might think  that with neglect
of the spin magnetic moments it would be independent of s, and
also of the direction of the vector s relative to 1, and thus of j. It will
be found in Chapter IX, however, that the energy depends very much
on the magnitude s of the vector s, although independent of its
direction when one neglects the spin magnetic moments, on account
of certain phenomena arising from the fact that the electrons  are
indistinguishable one from another. There are thus different energy-
levels of the System  for each  different value of Z and s. This means
that Z and s are functions  of the energy, according to the general
definition of a function given in 0 11, since the Z and s of a stationary
state are fixed when the energy of that state is fixed.

We tan  now take into account the effect of the spin magnetic
moments, treating it as a small perturbation according to the method
of 8 43. The energy of the unperturbed System  will still be approxi-
mately  a constant  of the motion and hence  Z and S, being functions
of this  energy, will still be approximately constants of the motion.
The directions  of the vectors 1 and s, however, not being functions  of
the unperturbed energy, need not now be approximately constants
of the motion and may undergo large secular variations. Since  the
vector j is constant,  the only possible Variation of 1 and s is a pre-
cession  about the vector j. We thus have an approximate model of
the atom consisting of the two vectors  1 and s of constant  lengths
precessing about their sum j, which is a fixed vector. The energy is
determined mainly by the magnitudes of 1 and s and depends only
slightly on their reiative directions,  specified by j. Thus states with
the same Z and s and different j will have only slightly different
energy-levels, forming what is called a multiplet  term.

Let us now take this atomic  model as our unperturbed System  and
suppose it to be subjected to a uniform magnetic field of magnitude J#
in the direction of the x-axis. The extra energy due to this magnetic
field will consist of a term

e&/2mc.  (m,+liLa,), (41)
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like  the last  term  in  equation  (89) of $ 41, contributed by each
electron,  and will  thus  be altogether

e3/2mc.  2 (m,+&r,) = eJ+/2mc.  (Zz+2sz) = eA/2m.  (j,+s,).  (42)

This  is  our perturbing  energy  Y. We shall  now use  the method of
6 43 to determine  the changes  in  the energy-levels  caused  by this  V.
The  method  will be legitimafe only provided fhe field is  so weak  that
V is  small  compared wifh  the energy  differentes  within  a multiplet.

Our  unperturbed  System  is degenerate,  on account of the direction
of the vector j being  undetermined.  We  must  therefore  take,  from
the representative  of V in  a Heisenberg  representation  for  the un-
perturbed System,  those matrix  elements  that refer  to one particular
energy-level  for  their  row  and column,  and obtain the eigenvalues  of
the matrix  thus  formed.  We tan  do this best by first  splitfing  up V
into two Parts,  one of which  is a constant  of the unperturbed  motion,
so that  its representative  contains  only matrix  elements  referring  to
the same  unperturbed  energy-Ievel  for their  row  and column,  while
the representative  of the other  contains  only matrix  elements  refer-
ring  to two  different unperturbed  energy-levels  for their  row  and
column,  so that this  second  part  does not  affect the first-Order  per-
turbation.  The term  involving  ja in  (42) is a constant  of the un-
perturbed motion and thus  belongs  entirely  to the first  part. For  the
term  involving s,  we have

where . .
Yx = sz3$--Jz~y = szEy-l~8v = l&-E,  SV,
yg = j,s,-szjx  = l,s,-szlx = Zzsx---Zxsz. (44)

The  first  term  in  this  expression  for sz is a constant  of the  unperturbed
motion and thus  belongs  entirely  to the first  Part,  while  the second
term,  as we shall  now See, belongs  entirely  to the second  part.

Corresponding  to (44) we  tan  introduce

Yz = 1,s,-+,.

It tan  now  easily  be verified  that

and from  (30) of 8 35
jxy,+j,y,+~z~z  = 0

h ~~1 = rgi LizJ  r,l = --yxT bz9  ral  = 0.
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These relations connectingj,, jy,  jz and yz,  rU,  yz are of the Same form
as the relations connecting m,, my,  m, and x, y,  x in the calculation
in 5 40 of the selection  rule for the matrix elements of x in a repre-
sentation with E diagonal. From the result there obtained that all
matrix elements of x vanish except those referring to two E values
differing by -f-n, we tan infer that all matrix elements of yz,  and
similarly of ya: and yV,  in a representation with j diagonal, vanish
except those referring to two j values differing by &iFi. The coeffi-
cients of yz and ry in the second term on the right-hand side of (43)
commute  with j, so the representative of the whole of this term will
contain only matrix elements referring to two j values differing by
rfr&,  and thus referring to two different energy-levels of the unper-
turbed System.

Hence  the perturbing energy V becomes,  when we neglect that
part of it whose representative consists of matrix elements referring
to two different unperturbed energy-levels,

The eigenvalues of this give the first-Order  changes  in the energy-
levels. We.  tan make the representative of this expression diagonal
by choosing our representation such that jz is diagonal, and it then
gives us directly the  first-Order  changes  in the energy-levels caused  by
the magnetic  field. This expression is known as Lande’s formula.

The result (46) holds only provided the perturbing energy V is small
compared with the energy diff erences within a multiplet. For larger
values of V a more complicated theory is required. For very strong
fields, however, for which  V is large compared with the energy differ-
ences  within  a multiplet, the theory is again very simple. We may
now neglect altogether the energy of the spin magnetic  moments for
the atom with no external field, so that for our unperturbed System
the vectors 1 and s themselves are constants of the motion, and not
merely their magnitudes Z and S. Our perturbing energy V, which  is
still eJ%/2mc.  (j,+s,),  is now a constant  of the motion for the unper-
turbed System, so that its eigenvalues give directly the changes  in the
energ y -1evels. These eigenvalues are integral or half-odd integral
multiples of e&ti/2mc  according to whether the number of electrons
in the atom is even or odd.



VIII

COLLISION PROBLEMS

48. General remarks
IN this chapter  we shall investigate Problems  connected with a par-
title which, coming from infinity, encounters or ‘collides with’ some
atomic System  and, after being scattered through a certain angle, goes
off to infinity again. The atomic System  which does the stattering
we shall call,  for brevity, the scatterer. We thus have a dynamical
System  composed of an incident particle and a scatterer interacting
with each  other, which we must deal with according to the laws of
quantum  mechanics, and for which we must, in particular,  calculate
the probability of stattering  through any given angle. The scatterer
is usually assumed to be of infinite mass and to be at rest throughout
the stattering  process. The Problem  was first solved by Born by a
method substantially equivalent to that of the next section. We must
take into account the possibility that the scatterer, considered as a
System  by itself, may have a number of different stationary states
and that if it is initially  in one of these states when the particle arrives
from infinity, it may be left in a different one when the particle goes
off to infinity again, The colliding  particle may thus induce transi-
tions in the scatterer.

The Hamiltonian  for the whole System  of scatterer plus particle
will not involve the time explicitly, so that this whole System  will
have stationary states represented by periodic solutions of Schrö-
dinger’s wave equation. The meaning of these stationary states
requires a little care to be properly understood. It is evident that
for any state of motion of the System  the particle will spend nearly all
its time at infinity, so that the time average  of the probability of the
particle being in any finite volume  will be Zero.  Now for a statiomry
state the probability of the particle being in a given finite volume,
like any other result of Observation, must be independent of the time,
and hence  this probability will equal its time average,  which we have
seen is Zero. Thus only the relative probabilities of the particle being
in different finite volumes will be physically significant,  their absolute
values being all Zero. The total energy of the System  has a continuous
range of eigenvalues, since the initial energy of the particle tan  be
anything. Thus a ket, 1s)  say, corresponding to a stationary state,
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being an eigenket of the total energy, must be of infinite length. We
tan see a physical reason for this, since  if 1s)  were normalized and if
& denotes that observable-a certain function of the Position  of
the particle-that is equal to unity if the particle is in a given finite
volume and Zero otherwise, fhen (sl&ls)  would be Zero,  meaning that
the average  value of &,  i.e. the probability of the particle being in the
given volume, is Zero, Such a ket 16) would not be a convenient one
to work with. However, with 1s)  of infinite length, (SI& js>  tan  be
finite and would then give the relative probability of the particle
being in the given volume.

In picturing a state of a System  corresponding to a ket IX) which
is not normalized, but for which (xlx)  = n say, it may be convenient
to suppose that we have n similar Systems all occupying the same
space but with no interaction  between them, so that each  one follows
out its own motion independently of the others, as we had in the
theory of the Gibbs ensemble in 0 33. We tan  then interpret (xlc~lx),
where 01  is any observable, directly as the total 01  for all the rt  Systems.
In applying these ideas to the above-mentioned Is} of infinite length,
corresponding to a stationary state of the System  of scatterer plus
colliding  particle, we should picture an infinite number of such sys-
tems with the scatterers all located at the same Point  and the particles
distributed continuously throughout space. The number of particles
in a given finite volume would be pictured as (st&  js>,  & being the
observable defined above, which has the value unity when the particle
is in the given volume and Zero otherwise. If the ket is represented
by a Schrödinger wave function involving the Cartesian coordinates
of the particle, then the Square of the modulus of the wave function
could be interpreted directly as the density of particles  in the picture.
One must remember, however, that eacF,  of these particles  has its own
individual scutterer. Different particles  may belong to scatterers in
different states. There will thus be one particle density for each  state
of the scatterer, namely the density of those particles  belonging to
scatterera in that state. This is taken account of by the wave function
involving variables describing the state of the scatterer in addition
to those describing the Position  of the particle.

For determining  stattering  coefficients we have to investigafe
stutionary stutes  of the whole System  of scatterer plus particle. For
instance, if we want to determine the probability of stattering  in
various directions  when the scatterer is initially in a given stationary
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state and the incident particle has initially a given velocity in a given
direction, we must investigate that stationary state of the whole
System  whose picture, according to the above method, contains at
great distances from  the Point  of location of the scatterers only
particles moving with the given initial velocity and direction and
belonging each  to a scatterer in the given initial stationary state,
together with particles moving outward from the Point  of location
of the scatterers and belonging possibly to scatterers in various
stationary states. This picture corresponds closely to the actual  state
of affairs in an experimental determination of stattering  coefficients,
with the differente that the picture really describes only one actuul
System  of scatterer plus particle. The distribution of outward moving
particles at inflnity  in the picture gives us immediately  all the infor-
mation about stattering  coefficients that could be obtained by experi-
ment. For practical calculations about the stationary state described
by this picture one may use a perturbation method somewhat like
that of $43, taking as unperturbed System,  for example, that for
which  there is no interaction  between the scatterer and particle.

In dealing with collision  Problems, a further  possibility to be taken
into consideration is that the scatterer may perhaps be capable of
absorbing and re-emitting the particle. This possibility arises  when
there exists one or more stutes  of absorption  of the whole System,  a
state of absorption being an approximately  stationary state which
is closed in the sense mentioned at the end of Q 38 (i.e. for which
the probability of the particle being at a greater distance than r from
the scatterer tends to zero as r -+ CO). Since a state of absorption is
only approximately stationary, its property of being closed will be
only a transient one, and after a sufficient  lapse of time there will be
a finite probability of the particle being on its way to infinity.
Physically this means there is a finite probability of spontaneous
emission of the particle. The fact that we had to use the word
‘approximately’ in stating the conditions required for the phenomena
of emission and absorption to be able to occur Shows  that these condi-
tions are not expressible in exact mathematical language. One tan  give
a meaning to these phenomena only with reference to a perturbation
method. They occur when the unperturbed System  (of scatterer plus
particle) has stationary states that are closed. The introduction of the
perturbation spoils the stationary property of these states and gives
rise to spontaneous emission and its converse  absorption.
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For’calculating  absorption and emission probabilities it is necessary
to deal with  m-~tutionury &&8 of the System, in contradistinction
to the case for stattering  coefficients, so that the  perturbation method
of $44 must be used. Thus for calculating an emission coefficient
we must consider the non-stationary states of absorption described
above. Ag&, since an absorption is always followed  by a re-emission,
it cannot  be distinguished from a stattering  in any experiment in-
volving a steady state of affairs, corresponding to a stationary state
of the System. The  distinction  tan be made only by reference  to a
non-steady state of affairs, e.g. by use of a stream of incident particles
that has a sharp  beginning,  SO that  the scattered particles will appear
immediately  after  the incident particles meet the scatterers, while
those  that  have  been absorbed and re-emitted will begin to appear
only some  time later. This stream of particles would he the picture
of ts  certain ket of infinite length, which could be used for calculating
the absorption coefficient.

49. The stattering  coefficient
We shall now consider the calculation of stattering  coefficients,

taking first the case  when there is no absorption and emission, which
means that our unperturbed System  has no closed stationary states,
We may conveniently take this unperturbed System  to be that for
which  there is no interaction  between the scatterer and particle.  Its
Hamiltonian will thus be of the form

E=H,+W, (1)
where H8 is that for the scatterer alone and W that for the particle
alone, namely, with neglect of relativistic  mechanics,

w = 1/2m.  (p2+zg+pl)*
The perturbing energy V,  assumed small, will now be a function of
the Cartesian coordinates of the particle x, y,  x, and also, perhaps,
of its momenta ~p%,  py, pB, together with dynamical variables describ-
ing the scatterer.

Since  we are now interested only in stationary states of the whole
System, we use a perturbation method like that of 8 43. Our unper-
turbed System  now necessarily has a continuous range of energy-
levels, since it contains a fiee  particle,  and this gives rise to certain
modifications  in the perturbation method. The question of the Change
in the energy-levels caused  by the  perturbation, which  was the main
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question  of 4 43, no longer has a meaning,  and the convention  in 5 43
of using  the Same nunaber of primes to denote nearly equal eigen-
values  of E and H now drops out. Again, the splitting  of energy-
levels which we had in 0 43 when the unperturbed System  is degenerate
cannot  now arise, since  if the unperturbed System  is degenerate the
perturbed one, which must also have a continuous range of energy-
levels,  will also be degenerate to exactly the same extent.

We again use the general scheme of equations developed at the
beginning of 3 43, equations (1) to (4) there, but we  now take our
unperturbed stationary state forming the Zero-Order  approximation
to belong to an energy-level E’ just equal to the energy-level H’ of
our perturbed stationary state. Thus the u’s  introduced in the second
of equations (3) 5 43 are now all zero and the second  of equations
(4) there now rcads (E’-E)I  I>  = V(0). (3)
Similarly, the third of equations (4) § 43 now reeds

(P-E)J2>  = V]l}. (4)
We shall proceed to solve equation (3) and to obtain the stattering
coefficient to the first Order.  We shall need equation (4) in 0 51.

Let 01  denote a complete  set of commuting observables describing
the scatterer, which are constants of the motion when the scatterer is
alone and may thus be used for labelling the stationary states of the
scatterer.  ‘I‘his  requires that H,  shall commute  with the OCS and be
a function  of them. We tan  now take a representation of the whole
system  in which the OC’S and 2, y, z,  the coordinates of the particle,
are diagonal. This will make E& diagonal. Let IO)  be represented by
( XCX’(O)  and 11) by (xa’(  1>,  the Single  variable x being written to
denote X,  y, x and the Prime being omitted from x for brevity. In the
same way the Single  differential d3x will be written to denote the
product dxdydz.  Equation (3), w-ritten in terms  of representatives,
becomes,  with the help of (1) and (2),

(E’---H,(a’)+P/2m.V2)(XcY’p}  = z 1 (XcY’lV]X”cY”)  d3X”(X”a”IO>.
a

(5)
Suppose that the incident particle  has the momentum  po and that
the initial stationary state of the scatterer is ~9. The stationary state
of our  unperturbed System  is now the one for which p = po and
cy  = CX*,  and hence  its representative is

<Xcx’lO> =L-  S4,ao ei(Po+X)Ih. (6)
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This makes equation (5) reduce  to

(~‘-H,(~‘)+~z/27Tb.V2)cxa’ll) = 1 (XdIVIX”~o>  &@f$P”,Xol/fi

or (k2+V2)(Xdp)  = F, (7)

where ~2 = %n~-2(E’-  H,(d)) (8)

and F = %r&-2
s

(xd 1 V 1 xO& dsXO  ei(PO,xO)lfi, (9)

a definite function of x, y, X, and a’. We must also have

E’ = Hs(ao)+  po2/2m. (10) :

Our  problem  now is to obtain  8 solution  (XCW’  11)  of (7) which, for
values of x, y,  z denoting Points  far from  the scatterer, represents
only outward moving particles. The  Square of its modulus, 1 (x&  / 1) 12,
will then  give the density of scattered particles belonging to scatterers
in the state a’ when the density of the incident  particles is 1 ( xa” IO) 12,
which is unity. If we transform to polar coordinates r,  6,& equation
(7) becomes

(r&#a’Il)  = F. (11)

Now F must tend to zero as r + co, on account of the physical re- 6
quirement that the interaction  energy between the scatterer and
particle  must tend to Zero as the distance between them tends to
infinity. If we neglect F in (11) altogether, an approximate Solution
for large r is <rw I 0 = u(O+xf)r-leikr, (12) ’

where u is an arbitrary function of 8, 4, and 01’, since  this expression
substituted in the left-hand side of (11) gives a result of Order  +.
When we do not neglect F, the Solution of (11) will still be of the
form (12) for large r,  provided F tends to zero sufficiently rapidly as
r-+co,butth  fe unction  u will now be definite and determined by the
Solution for smaller values of r.

For values 01’ of the $5 such that k2,  defined by (8),  is positive, the
k in (12) must be Chosen  to be the positive Square  root of k2, in Order
that (12) may represent only outward moving particles, i.e. particles
for which the radial component of momentum, which from 6 38
equals p,--iTrl or -i?i(a/&+r-l),  has a positive value. We now
have that the density of scattered  particles belonging to scatterers in
state  a’, equal  to the Square of the modulus of (12),  falls off with
increasing r according to the inverse  Square law, as is physically

-i.-
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necessary, and their angular distribution is given  by IU(&~‘)/~.
Further,  the magnitude, P’ say, of the momentum  of these scattered
particles must  equal k&,  the momentum  being radial for large r,
SO that their energy is equal to

P’2 k2?i2-=-=
2m 2m

E’-H,(cY’)  =

with the help of (8) and (10). This is just the energy of an incident
particle, namely p02/2m,  reduced by the increase in energy of the
scatterer, namely H,(  a’) - H,(  ao), in agreement with the law of con-
servation of energy. For values cy’  of the 01’s  such that k2 is negative
there are no scattered particles, the total initial energy being insuffi-
cient for the scatterer to be left in the state 01’.

We must now evaluate u(@x’)  for a set of values Q’ for the CJS such
that k2 is positive, and obtain the angular distribution of the scattered
particles belonging to scatterers in state c11’.  It is sticient to evaluafe
u for the direction 8 = 0 of the pole of the polar coordinates, since
this  direction is arbitrary. We make use of Green’s theorem, which
states that for any two functions of Position  A and B the volume
integral I (AV2B-BV2A) d3x  taken over any volume  equals the
surface integral 1 (MB/&+- B&4/%) d8 taken over the boundary
of the volume, a/an denoting differentiation along the normal to
the surface. We take

A = e-ikrCOB 3 > B = (re+ipj

and apply the theorem to a large sphere with the origin as centre.
The volume integrand is thus

e-ikrcoa  e 772(&$,&  11)  _  (re+a’  11  )‘i&-ikr  cos e

=  e-ikrcos81’iJ2+k2)(r6~~tll)  =.=  e-ikroosdF

from (7) or (ll), while the surface integrand is, with the help of (12),

= @cr  cos e u(  -~+~)ckr+i~e”*%cosee-~“rD”8

=  ikur-l(  1 +cos  t+@f~--COS~
with neglect of Y-~.  Hence we get

2T  Ir

s
e-ikrcoseF  d3X =

s  s
d# r2 sin 8 dt?,  ikur-l(  1+ cos O)eikdl  -cos 4,

0 0
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the volume integral on the left being taken over the whole of space.
The right-hand side becomes, on  being integrated by Parts  with
respect  to 8,

The second term  in the (> brackets  is of the Order  of magnitude of
r-1,  as would be revealed by further  partial integrations, and may
therefore be neglected. We arc thus left with

277

s
e-dbcoSflF d3x  = - 2 s d$ u(O#d) = - 4ru( O&‘),

0

giving the value of u(&x’)  for the direction 0 = 0.
This res&  may be written

u(O$a’)  = -
(477’) 1

- 1  e-bP7-XSe/fiF d3x,
(13)

since  P’ = EL If the vector p’ denotes the momentum  of the scattered
electrons  coming off in a certain direction (and is thus of magnitude
P’), the value of u for this direction will be

u(ef+faf) = -kw-1 J e-WdfiF  dsx,

as follows from (13) if one takes  this direction to be the pole of the
polar coordinates. This becomes, with the help of (9),

u(ef4faf) = -(27r)-hfi-2 J/ e-i(P’,x)/R  d3x  ( xaf ] V 1~0~0) d3xO ei(P”JCo)/fi

= -2mh(p’a’j  V Ip”dJ), (14)
when one makes a transformation from the coordinates x to the
momenta p of the particle, using the transformation function  (54)
of tj 23. The Single letter p is here used as a label for the three
components of momentum.

The density of scattered particles  belonging to scatterers in state
CE‘  is now given by /u(8f+‘af)12/r2.  Since  their velocity  is P’/m,  the

i

:
rate at which  these particles  appear per unit solid angle about the
direction of the vector p’  will be P‘/m.  ~u(e’+‘&)j2.  The density of
the incident particles  is, as we have Seen,  unity, so that the number
of incident particles  crossing unit area  per unit time is equal to their
velocity PO/m,  where PO is the magnitude of po. Hence  the effective
area that must be hit by an incident particle in Order  to be scattered

,

t
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in a unit solid angle about the direction p’ and then belong to a
scatterer in state CY’  will be

P’/PO.  lu(B’&x’)l2  = 47?m2h2P’/Po,  ~(~‘cL’~V~~~CX~)~~. (15) ’

This is the stattering  coefficient for transitions ao-+  CX’  of the scatterer.
It depends on that matrix element (p’a’l  V 1 p%O)  of the perturbing
energy V whose column  p%O  and whose row p’a  refer respectively to
the initial and final states of the unperturbed System, between which
the stattering  transition process takes place.  The result (15) is thus
in some ways analogous  to the result (24) of 8 44, although the
numerical  coefficients are different in the two cases,  corresponding
to the different natures  of the two transition processes.

50. Solution with the momentum  representation
The result (I 5) for the stattering  coefficient makes a reference only

to that representation in which the momentum  p is diagonal. One
would thus expect to be able to get a more direct proof of the result
by working all the time in the p-representation, instead of working
in the x-representation and transforming at the end to the p-repre-
sentation, as was done in 6 49. This would not at first sight appear
to be a great improvement, as the lack  of directness of the x-repre-
sentation method is offset by more direct applicability, it being
possible to picture the Square of the modulus of the x-representative
of a state as the density of a stream of particles  in process of being
scattered. The x-representation method has, however, other more
serious disadvantages. One of the main applications of the theory
of collisions  is to the case  of photons as incident particles.  Now a
Photon is not a simple particle but has a polarization. It is evident
from classical electromagnetic  theory that a Photon with a definite
momentum, i.e. one moving in a definite direction with a definite
frequency, may have a definite state of polarization (linear, circular,
etc.), while a Photon  with a definite  position, which is to be pictured
as an electromagnetic  disturbance confined to a very small volume,
cannot have any definite polarization. These facts  mean that the
polarization observable of a Photon commutes  with its  momentum
but not with its Position. This results in the p-representation method
being immediately applicable to the case  of photons, it being only
necessary to introduce the polarizing variable into the representatives
and treat it along with the CU’S describing the scatterer, while  the

3595.57 0
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x-representation method is not applicable.  Further,  in dealing with
photons,  it is  necessary to take relativistic mechanics into account.
This  tan  easily  be done in the p-representation method, but not SO

easily in the x-representation method.
Equation (3) still holds  with relativistic mechanics, but W is now

given by ~+-2 = rnV+P2  = mv+p;+p;+p; (16)

instead of by (2). Written in terms of p-representatives, equation (3)
gives (E’-H,(d)-  W)<pcL’(l) = (pa’IV10),

p being written instead of p’ for brevity and W being understood as
a definite function of pz, py, pz given by (16). This may be written

(W’-W(Pdl)  = (poqqO), (17

where w' = Bi'-H,(d) (1%

and is the energy required by the law of conservation of energy for
a scattered particle  belonging to a scatterer in state a’.  The ket (0)
is represented by (6) in the x-representation and the basic  ket lp”&J>
is represented by

. -

. .

(xd 1 p”ao)  = Satao  <x Ip”)  = 6,to10 h-*ei@“~X)/n,

from  the transformation function (54) of § 23. Hence

IO) = hqpv) , (19)
and equation (17) may be written

(FV- W)(pa’/l) = h~(pa’~V~pvJ). (209

We now make a transformation from the Cartesian coordinates
ps, py, pz of p to its polar coordinates P, CO,  x, given by

Pz = Pcosw, py = PsinocosX, pz = Psinwsinx.

If in the new representation we take the weight function P2 sine,
then the weight attached to any volume of p-space will be the same
as in the previous p-representation, so that the transformation will
mean simply a relabelling of the rows and columns of the matrices
without any alteration of the matrix elements. Thus (20) will become
in the new representation

(W’-  W)(Pwpx’ j l} = hyPCtJp’[  VI P%u0~%%0),

W being now a function of the Single variable P.
(21)
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The coefficient of (PWXCX’  (l), namely FV’-  W, is riow  simply a
multiplying  factor and not a differential Operator as it was with the
x-representation  method. We tan therefore divide out by this factor
and obtain an explicit expression for (PUXCX  11). When, however, 01’
is such that W’, defined by (18),  is greater than mc2,  this factor will
have the value Zero for a certain Point  in the domain of the variable
P,  namely the Point  P = P’, given in terms of W’ by (16). The
function (Pep’ ] 1) will then have a singularity at this point. This
singularity Shows  that (Pep’ 11)  represents an infinite number of
particles moving about at great distances from the scatterers with
energies indefinitely close to W’ and it is therefore this singularity
that we have to study to get the angular distribution of the particles
at infinity.

The result of dividing out (21) by the factor W’- W is, according
to (13) of 5 15,

(Pwp’~  1) = h~(PwXa’  j V]P%J”~%~)/(  W’- W)+X(cqa’)  S(W’-  W),
(22)

where A is an arbitrary function of w,  x, and a’.  To give a meaning
to the first term on the right-hand side of (22),  we make the conven-
tion that its integral with respect to P over a range that includes the
value P’  is the limit when E -+ 0 of the integral when fhe small
domain P-E to P’+E is excluded from the range of integration.
This is sufficient  to make the meaning of (22) precise,  since  we are
interested effectively only in the integrals of the representatives of
states when the representation has continuous ranges  of rows and
columns. We see that equation (21) is inadequate to determine the
representative <P~xdIl)  completely, on account of the arbitrary
function X occurring in (22). We must choose this A such that
(PWXOI’  ] l> represents only outward moving particles, since  we want
the only inward moving particles to be those corresponding to IO).

Let us take first the general case  when the representative <Pt.q I>
of a state of the particle  satisfies an equation of the type

(w’--w)mJxI)  = f(Pox), (23)

where  f( POX) is any function of P, o, and x, and W’ is a number
greater than CMA~,  so that (POX 1) is of the form

<PqI) =f(P~x)/(W’-W)S-h(~X)~(W’-W), (24)

and let us determine now what h must be in Order  that (Pq  1) may
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represent  only outward moving particles.  We tan do this by trans-
forming  (Pq 1) to the x-representation, or rather the (r0+)-repre-
sentation,  and comparing it with (12) for large values of r.  The
transformation function is

(re+IPcq)  = h-g&p,x)/?i = ~-~eZPr&os  w cos t?+  sin~sin8cos(~-&]/fi~.

For the direction  0 = 0 we find

The second  term in the  ( ) brackets  is of Order  r-2,  as may be verified
by further  partial integrations with respect  to Er), and tan therefore
be neglected. We are left with

When we Substitute for (PwxI)  its value given by (24), the first
tcrm  in the integrand in (25) gives

Q,
ih-+J

s
p dp ,+Prlfi(f(pvx)/(  w’- W)+%d S( W’- W>>. (26)

0

The term involving S(W’- W)  here may be integrated immediately
and @es,  when one uses Lhe  relation P d P = W d WIc2,  which
follows from (1 ti),

ih-kV-l * W d W e-@‘~~fiA(~x)s(  W’- W)
s??w”

= ih-lc-2r-1W’h(rrX)e-iP’rI”.

To integrate  the other term  in (26) we use the formula
(27)03 C Of g(P) $?!?df’ = g(P’)- s ;;T;dp,0 0

VW



with  neglect of terms involving r- l, for any continuous function g(P),

which formula holds since ~.K(P)K-~~~~~  dP is of Order  r-1 for  any
0

continuous function K(P) and since the differente

s(P>/(P’-P)-s(P’)i(P’-P)
is continuous. The right-hand side of (28),  when evaluated with
neglect of terms involving r--l, and also with neglect of the small
domain  PI--E to P’+E  in the domain  of integration, givesCo 03dP’) s iyipTF  dp  = g(  Pf)e-iP’r/?i  “~-p~  dp

-
s

-

03= ig( pf)e-iP’r/h s s’np:- pw_  . _..___  dP  = ing(P’)@“T/fi,
P’-P

(29)

In our present example g(P) is

g(P) = ih-Q-lP  f (P7rx)(  P’- P)/( W’- W),

which has the limiting value when P = P’,

g(P’) = ih-FP’f(P’q)W’/PV  = ih-+-2r-1W’f(P’rrX).

Substituting this in (29) and adding  on the expression (27),  we obtain
the following value for the integral (26)

h-*c-2r-1  W’(-vf  (P’77X)  +ih(~~))e--~~~~~. (30)
Similarly the second term in the integrand in (26) gives

h-W+lW’(-nf(P’O~)-ih(O~))e~~~~. (31)

The sum of these two expressions is the value of (rO+  1) when r is
large.

We require that (rO+l) shall represent only outward moving
particles, and hence  it must be of the form of a multiple of eiP‘r/fi.
Thus (30)  must vanish, so that

h(nx)  = -iTf(P’7TX). (32)
We see in this way that the condition that <r&j~>  shall represent
only outward moving particles in the direction 0 = 0 fixes the value
of h for the opposite direction 0 = V.  Since the direction 8 = 0 or
o = 0 of the pole of our polar coordinates is not in any way Singular,
we tan generalize  (32) to

GJX)  = --Gf(P’OX), (33)
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which  gives the value of X for an arbitrary direction. This value
substituted in (24) gives a result that may be written

(PWXI) =f(Pwx){l/(W’-W)-iTG(W’-W)), (34)

since  one tan Substitute P’ for P in the coefficient of a term involving
6(  W’- W)  as a factor without changing  the value of the term. The
condition  thut  (PWX  1) sh&?1  represent only outward moving particles is
thus thut  it shall contain the factor

{l/(w’-w)-i7r6(w’-w)}. (35)

It is interesting to note that this factor is of the form of the right-
hand side of equation (15) of $ 16.

With A given by (33),  expression (30) vanishes and the value of
<rO+  1) for large r is given by expression (3 1) alone, thus

(rOq5 1) = - 2?rh-k-2r-1W’f(P’Ox)e~~‘@.

This may be generalized to

<r@ 1) = - 2~h-k-+1  W’f( P’Wx)e~J”+,

giving the value of <rO+  i> for any direction 8,  4 in terms  of f(P’wx)
for the same direction labelled by O, X.  This is of the ferm (12) with

uuw  = - 2rrh-*c-2  W’f(  P’ox)

and thus represents a distribution of outward moving particles of
momentum  P’ whose number is

per unit solid angle per unit time. This distribution is the one
represented by the (PCOX  1) of (34).

From this general result we tan infer that, whenever we have a
representative ( PWX  1) representing only outward moving particles
and satisfying an equation of the type (23),  the number per unit solid
angle per unit time of these particles is given by (36). If this ( PWX  I>
occurs in a Problem  in which the number of incident particles is one
per unit volume, it will correspond to a stattering coefficient of

4n2W~W’P’
MP0 If (P’mx) 12’ (37)

It is only the value of the function  f(Pwx)  for the Point  P = P’ that
is of importante.
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lf we  now  apply th.is  general  theory to our equations (21) and
(SZ), we  have

f(Pwx)  = ~~(P~x~‘~v~Powoxo~o).

Hence from (37) the stattering  coefficient is

4-n2h2woW’P’/C*Po.  1 (P’wxcy’  1 v 1 P0,0x0010) 12. _ (38)
If one neglects relativity and puts W”W’/c4  = m2,  this result reduces
to the result (15) obtained in the preceding section by means  of
Green’s theorem.

51. Dispersive stattering
We shall now determine the stattering  when the incident particle

is capable of being absorbed, that is, when our unperturbed System
of scatterer plus particle has closed stationary states with the particle
absorbed. The existente  of these closed states for the unperturbed
System  will be found to have a considerable effect on the stattering
for the perturbed System, and indeed an effect that depends very
much  on the energy of the incident particle, giving rise to the pheno-
menon of dispersion in optics when the incident particle is taken to
be a Photon.

We use a representation for which  the basic  kets correspond to
the stationary states of the unperturbed System,  as was the case  with
the p-representation of the preceding section. We take these station-
ary states to be the states (p’d)  for which  the particle has a definite
momentum  p’ and the scatterer is in a definite state (x’, together with
the closed states, 1 say, which  form a separate discrete  set, and
assume that these states are all independent and orthogonal. This
assumption  is not accurate when the particle is an electron  or atomic ’
nucleus,  since in this case  for an absorbed state k: the particle will
still certainly be somewhere, so that one would expect to be able to
expand Jk)  in terms of the eigenkets 1 x’a’)  of x, y, z,  and the CX’S,
and hence  also in terms of the Ip’d)‘s.  On the other hand, when the
particle is a Photon  it will no longer exist for the absorbed states,
which  are then certainly independent of and orthogonal to the states
(p’c~‘)  for which  the particle does exist. Thus the assumption is valid
in this case, which  is an important practical one.

Since  we are concerned with stattering,  we must still deal with
stationary states of the whole  System. We shall now, however, have
to work to the second  Order  of accuracy, so that we cannot  use merely
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the first -Order  equetion  (3),  but must  use also (4).  Equation (3)
becomes, when written in terms of representatives in our present
representation,

w- W(w’Il>  = (P(gqO),

tJ---Ekwv = @Jvp>, 1
(39)

where W’ is the function of E’ and the CX”S  given by (18) and Ek  is  the
energy  of the stationary state II: of the unperturbed System. Similarly,
equation (4) becomes

W’-W(P~‘l2) = <Pa’1’v/l),

(E’-E,){kl2)  = (k:IV(l). 1
(40)

Kxpanding  the right-hand sidos by matrix rnultiplication, we get

( W’- JQ<Pa’12)

= 1 J- (PqVlp”~“) d3p”  (p’a”ll)+  2 (pa’IVIE”)(k”l1),”

(E’-,&(kla)
k”

I
(41)

= 2 J (kylp’cu’)  CPp”  (p%‘ll)+  c (Ic~v~Iv>(k”~l).
d k’

The ket 10) is still given by (19),  so (39) may be written

W’-  W(P~‘I  1) = h~(pa’y~pOaO), (42) *

(Ef-E,)(kI1) = ~“(JclVlp%O). (43)

We may assume that the matrix elements <k’IV  Ik”)  of V vanish,
since  these matrix elements are not essential to the phenomena under
investigation, and if they did not vanish it would mean simply that
the absorbed states ic  had not been suitably Chosen. We shall further
assume that the matrix elements (p’01’  1 V 1 p’a’) are of the second Order
of smallness when the matrix elements (k’l  V 1 p”a’},  (ph’]  V IE”)  are
taken to be of the first Order  of smallness. This assumption will be
justified for the case  of photons in $ 64. We now have from (43) and
(42) that (k 11)  is of the first Order  of smallness, provided E’ does not
lie near one of the discrete  set of energy-levels Ek, and (PU 11) is of
the second Order.  The value of (pa’  12) to the second Order  will thus
be given, from the first of equations (4l),  by

(W’--W)(poi’j2)  = ?G 2 (porfIVIE”)(k”IVIpoao)/(Ef-E,.).
k’
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The total correction in the wave function to the second Order, namely
/ poI’ 11) plus ( PCX’  12), therefore satisfies

(W’-W)((P~‘l1)S(P~‘l2))
= ~y(P4J7P”~o)+  2 (P~‘l~l-)<k;l’V~pOor0>~(~‘-~~)~*

k

This equation is of the type (23),  provided CY’  is such that W’  > mc2,
which  means that ac’  as a final state for the scatterer is  not incon-
sistent  with the law of conservation of energy. We tan  therefore infer
from the general result (37) that the stattering  coefficient is

47r2k2W0WfP’

I
~_--_---

C4P0

The stattering  may now be considered as composed of two Parts,
a part  that arises  from the matrix element (p’r~’  IV/ p”cuo) of the per-
turbing energy and a part that arises  from  the matrix elements’
(p’01’  1 V I!c)  and (Ic  [ V 1 POCLO). The first Part,  vhioh  is the Same as our
previously obtained result (38),  may be cdled  the direct  stattering.
The second part may be considered as arising from an absorption of
the incident particle into some state Ic, followed immediately by a
re-emission in a different direction,  and is like the transitions through
an intermediate state considered in 3 44. The fact that we have to
add the two terms before taking the Square of the modulus denotes
interference between the two kinds of stattering.  There is no experi-
mental  way of separating the two kinds, the distinction  between
them being only mathematical.

52. Resonance stattering
Suppose the energy of the incident particle to he varied con-

tinuously while the initial state 2 of the scatterer is kept fixed, so
that the total energy E’ or  Hf varies continuously. The formula (44)
now Shows  that as E’ approaches  one of the discrete  set of energy-
levels Ek,  the stattering  becomes  very large. In fact,  according fo
formula (44) the stattering  should be infinite when E’ is exactly equal
to an Ek.  An infinite stattering  coefficient is, of course, physically
impossible, so that we tan  infer that the approximations used in
deriving (44) are no langer  legitimate when E’ is close  to an Ek. To
investigate the stattering  in this case  we must therefore go back to
the exact equation

(E’-E)  IH’) = VIH’),

equation (2) of 6 43 with E’ written for Hf,  and use a different method
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of approximating to its Solution. This exact equation, written in
terms  of representatives hke  (41),  becomes

( W’- W)( pa’ IH’)

= c 1 (pa’~V[p’v’>  d3p”  (p”a”[H’>+ 2 {pcx’~V~IC”)(E”

(E”i!&)(kl~‘)

k”

= c J- (k~V(p”cx”)  Gp”  (p”d’IH’)-+ c (ky~E”)(k”~H’)
d k

H’>,
1

(45)
Let us take one particular  .#?&  and consider the case  when E’ is close

to it. The large term in the stattering  coefficient (44) now arises  from
those elements of the matrix representing V that lie in row k or  in
column k, i.e. those of the type (kl  VI  pa’) or (pa’l  Vlk). The scatter-
ing arising from the other matrix elements of V is of a smaller  Order
of magnitude. This suggests that in our exact equations (45) we should
make the approximation of neglecting all the matrix elements of V
except the important ones,  which are those of the type (PU 1 VlrC) or
(k 1 V 1 p01’),  where a’ is a state of the scatterer that has not too much
energy to be disallowed as a final state  by the law of conservation of
energy. These equations then reduce to

(FV-W)(pa’IH’) = <pa’~V~E)(k~H’),

(=--&&klH’>  = 2 1 @I~b’> d3P <Pa’IH’>,
(46)

a 1
the 01’ summation being over those values of CX’  for which FV’ given
by (18) is > mc 2. These equations arc  now sticiently  simple for us
to be able to solve exactly without firrther  approximation.

From the first of equations (46) we obtain by division

(pa’IH’>  = (pa’jY~k)(k~a’)/(W’-W)+AG(W’-W). (47)

We must choose  X,  which may be any function of the momentum
p and 01’,  such that (47) represents the incident particles  corresponding
to IO} or it% 1 p”ao)  together with only outward moving particles. [The
representative of I3 ~%P) is actually of the form X S( FV’-  W), since
the conditions 01’ = 010 and p = po for it not to vanish lead to
W’ = E’-HS(&)  = E’-Hs($)  = WO = W.] Thus (47) must be

(pa’IH’>  = hYPa’ I POaO>  +
+(pa’lVllc)(k]H’){1/(W’--W)--GS(W’---W)],  (48)

and from the general formula  (37) the stattering  coefficient  will be

4v2WoW’P’/hc*P0.  I(p’a’IVlk)121(klH’>12. (49)
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~[t  remains  for us to determine the value of (!c JH’). We tan do this
by snbstituting for (PU’  IH’) in the second of equations (46) its value
given  by (48). Chis  gives

CE’-E,)(kIH’)  = h+(kIVIpOaO)+

+QIN’)  c J’ I<-lvlp~‘>12{1/(W’-W)-irr  6(W’-W)}dSp

= h~(lclVlpOcuO)+(EIH’)(a-ib),

where a = 2 J I(4VlP~‘>12  d3Pl(W’-  W) PO)

and b = 77 1 (<k~;lpaybyw’-w) d3p
Ct.’ s

= 4 JJS l(-IVIPWxoL’)126(W’-W)P2dPsino  dwdx
oL#

ZZZ 77 2 P’  W’c-2
Is

I(k]VJP’Wxol’)12sinw  dwdx. (51)
a’

Thus (klH’) = h~(k(V~p”~oS/(E’-~~-a+~~). (52)

Note that a and b are real and that b is positive.
This value for <EIH’)  substituted in (49) gives for the stattering

coefficient

One tan  obtain the total effective area  that the incident particle
must hit in Order  to be scattered anywhere by integrating (53) over
all directions of stattering,  i.e. by integrating over all directions  of
the vector  p’ with its magnitude kept fixed at P’, and then summing
over all a’ that are to be taken into consideration, i.e. for which
W’ > mc2.  This gives, with the help of (51),  the result

4vh2W0  bl{kIV~p”a0)~2
--i%=--  (E’-,?Ck-a)2+b2’ (54)

If we suppose E’ to vary continuously through the value E,, the
main Variation of (53) or (64) will be due to the small denominator
(E’-Ek---a)2+b2.  If we neglect the dependence of the other factors
in (53) and (54) on E’, then the maximum stattering  will occur when
E’ has the value E,+a  and the stattering  will be half its maximum
when  E differs from this value by an amount b. The large amount of
stattering  that occurs for values of the energy of the incident particle
that make E’ nearly equal to Ek give rise to the phenomenon of an
absorption fine. The centre  of the line is displaced by an amount
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a from the resonance energy of the incident particle, i.e. the energy
which would make the total energy  just Ek,  while the quantity  b is
what is  sometimes called the half-width of the line.

53. Emission and absorption
For studying emission and absorption we must consider  non-

stationary states of the System  and must use the perturbation method
of 3 44. To determine the coefficient of spontaneous  emission we must
take an initial state for which the particle is absorbed, corresponding
to a ket Ik), and determine the probability that at some  later time
the particle shall be on its way to infinity  with a definite momentum.
The method of $46 tan now be applied. From the result (39) of that
section we see that the probability per unit time per unit range of w
and X, of the particle being emitted in any direction CO’,  X’ with  the
scatterer being left in state a’  is

2&ll(  W’O’X’OI’  1 v Ilc)  12, (55)

provided, of course, that c11’  is such that the energy W’, given by (18),
of the particle is greater than mc 2. For values  of 01’ that do not satisfy
this condition there is no emission possible. The matrix element
(W’o’x’a’lV]k)  here must refer  to a representation  in which W, W,  x,
and 01  are diagonal wifli the weight ftinction  unity. The matrix
elements of V appearing in the three preceding sections refer  to a repre-
‘sentation Sn which pz, J.+,,  pz are diagonal with the weight function
unity, or P,  O,  x ar~;@i+gonal  with the weight function  P2 sino.
They would thus refer  to a representation in which W,  CO, x are
diagonal with the.  weigh$  function  dP/o? W. P2 sin o = WP/c2.  sin CO.
Thus the matrix &ment  ( W’w’x’a’(  V Ik>  in (55) is equal to
( W’P’/ci  . sin o’)*  times aur previous matrix element < W'O'X'CX'  1 V Ik>
or ( P’LII’ 1 V Ilc),  so that (55) is equal to

The probability of emission per unit  solid angle per unit time, with
the scatterer simultaneously dropping to state OZ’,  is thus

2n W’P’
n 7 I(P’4’Vl~)12.

TO obtain the total probability per unit  time of the particle being
em&ed  in any direction, with any final state for the scatterer, we
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must integrate (56) over all angles w’, x’ and sum over all states cy’
whose  energy  &(a’) is such that H,(a’)+mc2  < Bk.  The result is
just 2b/h,  where b is defined by (51). There is thus this simple  rela-
tion  between the total emission  coeficient  and the half-width b of the
&mption  line.

I,et us now consider absorption. This requires that we shall  take
an initial state for which the particle is certainly not absorbed but is
incident with  a definite momentum. Thus the ket corresponding to
the initial state must be of the form (19). We  must now determine
the probability of the particle being absorbed after time t. Since  our
final state Ic is not one of a continuous range, we cannot  use directly
the result (39) of 5 46. If, however, we take

IO>  = lPOaO), (57)
as the ket corresponding to the initial state, the analysis  of $9  44 and 46
is still applicable as far as equation (36) and Shows  us that the proba-
bility of the particle being absorbed into stabte  k after time t is

WWlP”~o~12[I -co*~(~~-Eljtjfb)]~(~~-  R’)!

This corresponds to a distributim of in&i$@  particles of density
h-3, owing to the omission of the factor ,bt  from (57),  as compared \I ,.,
with (19). The probability sf there being ah absorption after time
t when there is one incident particle crossi&g  unit area per unit time
is therefore

2hVP/cV”‘. ~(k~V~pOcuo)~2[1 -cos((.E&r)t/n)]prk-E’)2.  (58)

To obtain the absorption coefficient we must consider the incident
particles not all to have exactly the Same energy  Wo = E’---H,(o~o),
but to have a distribution of energy values about the correct value
Ek--Hs(czo)  required for absorption. If we take a beam of incident
particles consisting of one crossing unit area per unit time per unit
energy  range, the probability of there being an absorption after time
t will be given by the integral of (58) with respect  to E’. This integral
may be evaluated in the Same way as (37) of 9 46 and is equal to

4,rr2h2  W”t/c2P0. 1 (k 1 V 1 pV)  1 2.
The probability per unit time of an absorption taking place  with an
incident beam of one particle per unit area per unif  time per unit
energy range is therefore

4n2h2  W”/c2Po.  1 (k 1 V 1 p”aO)  1 2,
which is the absorption coefficient.

(59)
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The connexion between the absorption and emission coefficienfs
(59) and (56) and the resonance stattering  coefficients calculated in
the preceding section should be noted. When the incident beam does
not consist of particles  all with the Same energy, but consists of a unit
distribution of particles per unit energy range crossing unit area per
unit  time, the total number of incident particles with energies near
an absorption line that get scattered will be given by the integral
of (54) with respect to E’. If one neglects the dependence of the
numerator of (54) on E’, this integral will, since

s b
(,&4,42+~2  dE’  = ?T,

-CO

have just the value (69). Thus the total nunaber of scuttered particles
in the neighbourhood of an absorption line is equul  to the total number
abwrbed.  We tan therefore regard all these scattered particles as
absorbed particles that are subsequently re-emitted in a different
direction.  Further,  the number of particles in the neighbourhood of
the absorption line that get scattered per unit solid angle about a
given direction  specified by p’ and then belong to scatterers in state
01’ will be given by the integral with respect to E’ of (53),  which
integral has in the same way the value

This is just equal to the absorption coefficient (59) multiplied by the
emission coefficient (66) divided by 2b/&,  the total emission coefficient.
This is in agreement with the Point  of view of regarding the resonance
scattered particles as those that are absorbed and then re-emitted,
with the absorption and emission processes  governed independently
each  by its own probability law, since this Point  of view would
make the Füraction  of the total number of absorbed particles that are
re-emitted in a unit solid angle about a given direction just the
emission coefficient for this direction divided by the total emission
coefficient .
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SYSTEMS CONTAINING SEVERAL SIMILAR PARTICLES

54. Symmetrical and antisymmetrical states
IF a System  in atomic  physics  contains a number of particles of the
same  kind, e.g. a number of electrons,  the particles are absolutely
indistinguishable  one from another. No observable Change is made
when  two of them arc interchanged. This circumstance  gives rise to
some  curious phenomena in quantum  mechanics having no analogue
in the classical theory, which arise  from the fact that in quantum
mechanics a transition may occur resulting in merely the interchange
of two similar particles, which transition then could not be detected
by any observational means. A satisfactory theory ought, of course,
to count two observationally indistinguishable states as the same
state and to deny that any transition does occur when two similar
particles exchange  places. We shall find that it is possible to reformu-
late the theory so that this is so.

Suppose we have a System containing n similar particles. We may
take as our dynamical variables a set of variables f1 describing the
first  particle,  the corresponding set f2 describing the second particle,
and so on up to the set & describing the nth particle.  We shall  then
have the &.‘s  commuting with the &‘s  for r # s.  (We may require
certain extra variables, describing what the System  consists of in
addition to the n similar particles, but it is not necessary to mention
these explicitly in the present chapter.)  The Hamiltonian describing
the motion of the System  will now be expressjble as a function  of the
fl, e2,...,  fn.  The fact that the particles arc  similar requires that the
Hamiltonian shull be a symmetricai  function  of the t1,f2,.,.,  &,  i.e. it
shall  remain unchanged  when the sets of variables &  are interchanged
or  permuted in any way. This condition must hold, no matter what
perturbations are applied to the System. In fact,  any quantity of
physical significance must be a syrnmetrical  function  of the 6’s.

Let ja,}, lbi>,  . . . be kets for the first  particle  considered as a dynami-
cal System  by itself. There will be corresponding kets Ia,),  1 b,},  . . . for
the second particle  by itself, and so on. We  tan get a ket for the
assembly by taking the product  of kets for each  particle  by itself,
for example

laJlW~~).4g~>  = lalb2ca.~.gn) (11
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say,  according to the notation of (65) of 6 20. The ket ( 1)  corresponds
to a spezial  kind of state for the assembly, which may be described
by saying  that each  particle is in its own sfate, corresponding to its
own  factor on the left-hand side of (1). The general ket  for the
assembly is of the form of a sum or integral of kets like  (l),  and
corresponds  to a state for the assembly for which one cannot  say that
each  particle is in its own state, but only that each  particle is partly
in several states, in a way which is correlated with the other  particles
being partly in several states. If the kets ja,), Ib,),... arc  a Set of
basic kets for the first particle by itself, the kets la,),  jb,),...  will be
a set of basic kets for the second  particle by itself, and so on, and the
kets (1) will be a set of basic kets for the assembly. We cal1  the  repre-
sentation provided by such basic kets for the assembly a ,symmetricuZ
representution,  as it treats all the particles on the same footing.

In (1) we may interchange the kets for the first two particles and
get another ket for the assembly, namely

IWa,)Ic,).&G  = Ibw,...g,>.
More generally, we may interchange the role of the first two particles
in any ket for the assembly and get another ket for the assembly.
The process of interchanging the first two particles is an Operator
which tan  be applied to kets for the assembly, and is evidently a
linear Operator, of the type dealt with in $7. Similarly, the process
of interchanging any pair of particles is a linear Operator, and by
repeated applications of such interchanges we get any Permutation
of the particles appearing as a linear Operator which tan be applied
to kets for the assembly. A Permutation is called  an ewen permutation
or an oüki!  permutation according to whether it tan  be built up from
an even or an odd number of interchanges.

A ket for the assembly IX) is called symmetrical  if it is unchanged
by any Permutation, i.e. if

wo = IX> (2) ’
for any  Permutation P. It is called antisymmetrical  if it is unchanged
by any even Permutation and has its sign changed  by any odd
Permutation, i.e. if w> = IkIX), (3)
the + or - sign being taken according to whether P is even or edd.
The  state corresponding to a symmetrical ket is called a symmetricd
state, and the state corresponding to an antisymmetrical ket is called
an antisymmetrical  Stute.  In a symmetrical representation, the repre-

’ t
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sentative of a symmetrical ket is a symmetrical function of the
variables referring to the various particles and the representrttive of
an antisymmetrical ket is an antisymmetrical function.

In the Schrödinger picture, the ket corresponding to a state of the
assembly will vary with time according to Schrödinger’s equation of
motion. If it is initially symmetrical it must always remain sym-
metrical, since, owing to the Hamiltonian being symmetrical, there
is nothing to disturb the symmetry. Similarly if the ket is initially.
antisymmetrical it must always remain antisymmetrical. Thus a
stute  which is initially symmetrical always remains  8ymmetriu.d  and
a state Which  is initially antisymmetricul  always rernuins antisym-
metricul.  In consequence, it may be that for a particular kind of
particle only symmetrical states occur in nature, or only anti-
symmetrical states occur in nature. If either of these possibilities
held, it would lead to certain special phenomena for the particles in
question.

Let us suppose first that only antisymmetrical states occur in
nature. The ket (1) is not antisymmetrical and so does not corre-
spond to a state occurring in nature. From (1) we tan in general form
an antisymmetrical ket by applying all possible permutations to it
and adding the results, with the coefficient - 1 inserted before those

.terms arising from an odd Permutation, so as to get

the + or - sign being taken according to whether P is even oi odd.
The ket (4) may be written as a determinant

and its representative in a symmetrical representation is a determi-
nant. The ket (4) 0; (5) is not the general antisymmetrical ket, but
is a specially simple one. It corresponds to a state for the assembly
for which one tan say that certain particle-states, namely the states
a, b,  c,. . . ,g, are occupied, but one cannot say which particle is in
which state,

3595.57
particle being equally likely to be in any stak If

P
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two of the particle-states a, b, c,. . .,  g arc  the  Same,  the ket (4) or (5)
vanishes  and does not correspond to any state for  the assembly.
Thus  two  particles cunnot  occupy the same stak  More generally,  the
occupied  states must be all independent, otherwise (4) or (5) vanishes.
This  is  an important characteristic of particles for which only anti-
symmetrical states occur in nature. It leads to a special statistics,
which  was first studied by Fermi, so we shall cal1 particles for which
only antisymmetrical states occur in nature ffmGms.

Let US suppose now that only symmetrical states occur in nature.
The kef (1) is not symmetrical, except in the special case  when all the
particle-states a, b, c ,..., g are the Same, but we tan always obtain a
symmetrical ket from it by applying all possible permutations to it
and adding the results, so as to get

g %b,%4L)~ (6)

The ket (6) is not the general symmetrical ket, but is a specially
simple one. It corresponds to a state for the assembly for which one
tan say that certain particle-states are occupied, namely the states
a, b, c,. . . ,g, without being able to say. which particle is in which state.
It is now possible for two or  more of the states a, b, c,.. .,  g to be the
Same,  so that two or more particles tan be in the same state. In spite
of this, the statistics of the particles is not the Same as the usual
statistics of the classical theory. The new statistics was first studied
by Bose, so we shall cal1 particles for which only symmetrical states
occur in nature bosons.

We tan see the differente  of Bose statistics from the usual statistics
by considering a special case-that of only two particles and only two
independent states a and b for a particle.  According to classical
mechanics, if the assembly of two particles is in thermodynamic
equilibrium at a high temperature, each  particle will be equally likely
to be in either state. There is thus a probability 4 of both particles
being in state a, a probability 2 of both particles being in state b,
and a probability & of one particle  being in each state. In the quan-
turn theory there are three independent symmetrical states for the
pair of particles, corresponding to the symmetrical kets ~a,)~a,>,

Ib,)  Ib,),  and  Ia,>  Vd+  Ia,>  Ib,), and describable as both particles in
sfate a, both particles in state b, and one particle in each  state
respectively. For thermodynamic  equilibrium at a high temperature
these three states are equally probable, as was shown in 8 33, so that

f
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there is a probability 4 of both particles being in state a, a probability
Q of both particles being in state b,  and a probability 4 of one particle
b&ng  in each state. Thus with Bose statistics the probability of two
parti&s  being in the same state is greuter  than with  classical statistics.
Bose  statistics differ from classical statistics in the opposite direction
t. Fermi statistics, for which the probability of two particles being
in  the same state  is  Zero.

In building up a theory of atoms on the lines  mentioned at the
beginning of $ 38, to get agreement with experiment one must assume
that two electrons are never in the Same  state. This rule is known as
Pauli’s  exclusion principle. It Shows  us that electrons are fermions.
Planck’s  law of radiation Shows  us that photons ure bosons, as only the
Bose  statistics for photons will lead to Planck’s law. Similarly,  for
each of the other kinds of particle known in physics,  there is experi-
mental evidente  to show either that they are fermions, or that they
are bosons. Protons, neutrons, positrons are fermions, cr-particles  are
bosons. It appears that all particles occurring in nature are either
fermions  or bosons, and thus only antisymmetrical or symmetrical
states for an assembly of similar particles are met with in practice.
Other more complicated kinds of symmetry are possible mathemati-
cally, but do not apply to any known particles. With a theory which
allows only antisymmetrical or only symmetrical states for a particu-
lar kind of particle, one cannot  make a distinction between two states
which differ only through a Permutation of the particles, so that the
transitions mentioned at the beginning of this section disappem.

55.  Permutations  as dynamical variables
We shall now build up a general theory for a System  confaining n

simila;r  particles when states with any kind of symmetry properties
are allowed, i.e. when there is no restriction to only symmetrical or
only antisymmetrical states. The general state now will not be sym-
metrical or antisymmetrical, nor will it be expressible linearly in
terms of symmetrical  and antisymmetrical states when n > 2. This
theory will not apply directly to any particles occurring in nature,
but all the same it is useful  for setting up an approximate treatment
for an assembly of electrons, as will be shown  in fs 58.

We have Seen that each  Permutation P of the n particles is a linear
operator  which tan be applied to any ket for the assembly. Hence
we tan regard P as a dynamical variable in OUT  System  of n particles.
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There are n! permutations, each of which tan be regarded as a
dynamical variable. One of them, Fl say, is the identical Permutation,
which is equal to uni@. The product of any two permutations is a
third Permutation and hence any function of the permutations is
reducible to a linear function of them. Any Permutation P has a
reciprocal P-l satisfying

PP-1 = p-1p = Pl = 1.

A Permutation P tan be applied to a bra (XI for the assembly,
to give another bra, which we shall denote for the present by P(X (.
If P is applied to both factors of the product (XI  Y), the product
must be unchanged, since it is just a number, independent of any
Order  of the particles. Thus

.showing that
uYxopI  y> = (XI y>

P(X~=<X~P-1 (7)
Now P(XJ is the conjugate imaginary of PIX) and is thus equal to
(XlP,  and hence nfrom (7)

p = p-1. (8)
Thus a permutation is not in general a real dynamical variable, its
conjugate complex  being equal to its reciprocal.

Any Permutation of the numbers 1,2,  3,..., n may be expressed in
the cyclic notation, e.g. with n = 8

in which each number is to be replaced by the succeeding number in
a bracket, unless it is the last in a bracket, when it is to be replaced
by the flrst in that bracket. Thus Pa changes the numbers 12345678
into 47138625. The type of any Permutation is specified by the
partition of the number n which is provided by the number of num-
bers in each of the brackets. Thus the type of P, is specified by the
partition 8 = 3+ 2 + 2 + 1. Permutations of the same type, i.e. corre-
sponding to the same partition, we shall call simdur.  Thus, for
example, Pa in (9) is similar to

4 = (871)(35)(46)(2). (W

The whole of the n! possible permutations may be divided into sets
of similar permutations, each such set being called a ciuss. The per-
mutation P1 = 1 forms a class  by itself. Any Permutation is simiIar
to its reciprocal.
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When  two permutations Pa  and Pu are similar, either of them Pb
may be obtained by making a certain Permutation PS in the other
cz. Thus, in our example (9),  ( 10) we tan take Pz to be the permuta-
tion that changes  14327586 into 87135462, i.e. the Permutation

P, = (18623)(475).

Different ways of writing P,  and P, in the cyclic notation would lead
to different Pz’s. Any of these Pz’s  applied to the product P, IX>
would  Change  it into Pb.  Pz  IX),  i.e.

P,P,lX> = PbP3,jX).

Hence Pb = PS P,  P;$ (11)
which  expresses the condition  for P,  and Pb to be similar as an
algebraic equation. The existente of any Pz  satisfying  (11) is suffi-
cient to show that P,  and Pb are similar.

56. Permutations as constants of the motion
Any symmetrical function V of the dynamical variables of all the

particles is unchanged  by the application  of any Permutation P, so
P applied to the product VIX> affects  only the factor  IX), thus

PVJX)  = VPJX).
Hence PV = VP, (12)
showing that a symmetrical function of the dynamical variables com-
mutes  with every permutation. The Hamiltonian is a symmetrical
function of the dynamical variables and thus commutes  with every
Permutation. It follows that euch permutation  is a constunt  of the
m.otion.  This holds even if the Hamiltonian is not constant.  If jXt>
is  any Solution  of Schrödinger’s equation of motion, P IXt} is another.

In dealing with any System  in quantum  mechanics,  when we have
found a constant of the motion 01, we know that if for any state of
motion, 01  initially has the numerical  value (Y’,  then it always has this
value, so that we tan  assign different numbers CX’  to the different
states and so obtain a classification of the states. The procedure is
not so straightforward, however, when we have several constants of
the motion u: which do not commute  (as is the case  with our permuta-
tions P),  since  we cannot  in general  assign numerical  values for all
the a’s  simultaneously to any state. Let us first take the case  of a
System  whose Hamiltonian does not involve the time explicitly. The
existente  of constants of the motion CII  which  do not commute  is
then a sign  that the System  is degenerate. This is because,  for ZL
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non-degenerate System,  the  Hamiltonian H by itself forms a complete
set of commuting observables and hence,  from Theorem 2 of $19, each
of the ~11’s  is a function of H and therefore commutes with any other CY.

We must now look  for a function p of the a’s  which has one and
the same numerical value  ß’ for all those states belonging to one
energy-level H’, so that  we  tan  use ß for classifying the energy-levels
of the System. We tan  express  the condition for ß by saying that it
must be a function of H and must therefore commute with every
dynamical variable that  commutes with H, i.e. with every constant
of the motion. If the a’s are the only constants of the motion, or if
they are a set that commute with all other independent constants of
the motion, our Problem  reduces  to finding a function ß of the CX’S
which commutes with all the CY’B. We tan  then assign a numerical
value ß’ for ß to each  energy-level of the System. If we tan find
several such functions ß, they must all commute with each  other, so
that we tan give them all numerical values simultaneously. We ob-
tain  thus a classification of the energy-levels. When the Hamiltonian
involves the time explicitly one cannot talk about energy-levels, but
the ß’s will still give a useful  classification of the states.

We follow this method in dealing with our permutations P. We
must find a function x of the P’s such that PxP-l = x for every P.
It is evident that a possible x is 2 Pc,  the sum of all the permutations
in a certain class  c, i.e.  the sum of a set of similar permutations, since
C PP, P-1 must consist of the same permutations summed in a differ-
ent Order.  There will be one such x for each  class.  Further,  there tan
be no other independent x,  since an arbitrary function of the P’s tan
be expressed as a linear function of them with numerical coefficients,
and it will not then commute with every P unless the coefficients of
similar P’s are always the Same. We thus obtain all the X’S  that tan
be used for classifying the states. It is convenient to define each  x as
an average  instead of a sum, thus

where n,  is the number of P’s in the class  c. An alternative expression
for xc is xc = n!-lz PP,P-1,

P
(13)

the sum being extended over all the n! permutations P, it being easy
to verify that this sum contains each  member of the class  c the same
number  of times. For  each  Permutation P there is one x, x(P) say,
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equal to the average of all permutations similar to P. One of the
~‘9 is x(PJ = 1.

The constants of the motion xl, x2,...,  xm obtained in this way will
each  have a definite numerical vslue for every stationary state of the
System, in the case  when the Hamiltonian  does not involve the time
explicitly, and also in the general case  tan  be used for classifying
the states, there being one set of states for every permissible set of
numerical  values x;,  &,...  , J&  for the x’s.  Since  the x’s  are always
constants of the motion, these sets of states will be exclusive,  i.e.
transitions will never take place from a state in one set to a state in
another.

The permissible scts  of values x’ that one tan give to the x’s arc
limited by the fact that there exist algebraic relations between the
X’S.  The product  of any two x’s, xP  x*,  is of course expressible as
a linear function of the P’s, and since it commutes  with  every P it
must  be expressible as a linear function of the x’s,  thus

XPXcl = al  xl+a2  x2+...+am  xm9 (14)
where the a’s are numbers. Any numerical values x’ that one gives
to the X’S  must be eigenvalues of the x’s and must satisfy these same
algebraic equations. For every solution x’ of these equations there
is one exclusive set of states. One solution is evidently xh  = 1 for
every xP,  giving the set of symmetrical states. A second obvious
Solution, giving the set of antisymmetrical states, is x;i  = -&l, the
+ or - sign being taken according to whether the permutations in
the class  p are even or odd. The other solutions may be worked out
in any special case  by ordinary algebraic methods, as the coefficients
a in (14) may be obtained directly by a consideration of the types
of Permutation to which  the X’S  concerned refer. Any Solution is,
apart from a certain factor, what is called in group theory a character
of the group of permutations. The x’s  are all real dynamical variables,
since each P and its conjugate complex  P-1 are similar and will occur
added together in the definition of any x, so that the x”s  must be all
real numbers.

The number of possible solutions of the equations (14) may easily
be determined, since it must equal the number of different eigen-
values of an arbitrary function B of the X’S.  We tan express B as
a linear  function of the X’S  with the help  of equations (14); thus

B = b~xri-bax~+...-/-b,.uX,. (15)
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Similarly,  we tan  express  each  of the quantities Bz, BJ,. .., gm as 8
linear function of the Ys. From  the m equations thus obtained,
together  with the equation X(e) = 1, we tan  eliminate the m un-

knowns xl,  x~,..O>  Xrn) obtaining as result an algebraic equation of

degree m for B,
Bm+c, Bm-l4c,  Bm-2+...+Cm  = 0.

The m solutions of this  equation give the m possible eigenvalues
for B, each  of which will, according to (15), be a linear function of b,,
b2>‘“? b, whose coefficients are a permissible set of values x;,  X& . . . . x;.
The sets of values x’ thus  obtained must be all different, since  if
there were fewer  than m different permissible sets of values X’ for the
~‘8,  fhere would exisf a linear function of the x’s every one of whose
eigenvalues  vanishes, which would mean that the linear function itself
vanishes  and the x’s are nof linearly  independent. Thus the number of
permissible sets of numerical  values for the x’s  is just equal to m, which
is the number of classes  of permutations or the number of partitions
of n. This number is therefore  the number of exclusive sets of states.

All dynamical variables of physical importante and all observable
quantities are symmetrical between the particles  and thus commute
with all the P's. Thus the only functions of the P's of physical
importante are the x’s. The states corresponding to IX’>  and to
f(P) 1 x’),  where IX’)  is any eigenket of the x’s  belonging to the eigen-
values x’ and f(P) is any function of the P's such that f( P) IX') # 0,
are observationally indistinguishable and are thus physically equiva-
lent. There is a definite  number, n(x’)  say, of independent kets which
tan  be formed by multiplying 1~‘)  by functions  of the P's, which
number depends only on the X”S.  It is the number of rows and
columns in a matrix representation of the P's in which each  x is
equal to x’. If 1~‘)  corresponds to a stationary state, n(x’) will be
its degree of degeneracy (so far as concerns degeneracy caused  by the
symmetry  between  the particles). This degeneracy cannot be removed
by any  perturbation that is symmetrical between the particles.

57. Determination of the energy-levels
Let US apply the perturbation method of 6 43 and make a firsf-order

calculation of the energy-levels  in fhe case  when the Hamiltonian
does  not involve the time explicitly. We suppose that for our  unper-
turbed  stationary  states of the assembly each  of the similar particles
has its  own individual state. Wifh  n particles,  we shall have n of
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these states, cor-‘responding  to kets Ial), la2),...,  ICYQ)  say, which we
assume for the present  to be all orthogonal. The ket for  the assembly
is then (16)
fike  (1)  with 01l,  a2,.  . . instead of a, b,..  . . If we apply any Permutation
p to it we get another ket

wo = Jd)lcy8~**.  bi? (17)

say,  r,  s,.**, x being some Permutation of thc numbers 1, Z,...,  n,
corresponding to another stationary stafe of the assembly with the
same energy. There are thus altogether n! unperturbed states with
this energy, if we assume there are no other Causes of degeneracy.
According to the method of 8 43 when the unperturbed System  is
degenerate, we must consider those elements of the matrix represent-
mg fhe perturbing energy Y that refer to two states with the Same
energy, i.e. those of the type (X IP, VP, IX).  These will form a matrix
tith n! rows and columns,  whose eigenvalues are the first-Order
corrections in the energy-leveks.

We must now introduce another kind of Permutation Operator
which tan be applied to kets of the form (17),  namely a Permutation
which acts on the indices  of the a’s.  We denote such a Permutation
Operator by Pa. The essential differente  between the P’s and the
Pa’s may be seen in the following way. Let us consider a Permutation
in the general sense, say that consisting of the interchange  of 2 and 3.
This may be interpreted either as the interchange  of the objects 2 and
3 or as the interchange  of the objects  in the places 2 and 3, these two
operations producing in general quite different results. The first of
these interpretations is the one that gives the Operators P, the objects
concerned being the similar particles.  A Permutation P tan be
applied to an arbitrary ket for the assembly. A Permutation with the
second interpretation has a meaning, however, only when applied
to a ket of the form (17),  for which each  of the particles is in a ‘place’
specified by an a, or to a sum of kets of the form (17). A Permutation
P may be considered as an ordinary dynamical variable. A permuta-
tion  Pa  may be considered as a dynamical variable in a restricted
sense, valid when one is dealing only with states obtainable by super-
Position of the various states ( 17). This is the case  for our present
perturbation  Problem.

We tan form algebraic  functions  of the Pa  which will be other
Operators  applicable to kets of the form (17). In particular  we tan
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fom x(p;),  the average  of ah p”‘s in a certain  class  c. This  must.
equal #), the average  of the Permutation Operators P in the same
class,  since  the total set of all Permutations in  a given class must
evidently be the Same whether  the Permutations  are applied to the
particles  or to the places  the Particles  are in. Any P commutes  with
any Pu, i.e. P,P$  = P$P,. (18)

By labelling  the CU’S by the same  numbers  1, 2, 3,...,  n which  label
the particles,  we set up a one-one comespondence  between the a’s  and
the parficles,  so that given any Permutation Pa applying to the par-
ticles,  we  tan  give a meaning to the same  Permutation P; applying
to the $8. This meaning is such that, for  the ket IX)  given by (16),

PgP,lX>  = IX>. (19)
Since  the various kets lal}, JOB’>,... arc  orthogonal, IX) and PIX) are
orthogonal unless  P = 1. It follows that, for any coefficients cp,

c cp<X(p”p,IX) = CP,, (20)
P

provided  IX)  is normalized, the summation being over all the n!
permutations P or Pa, with Pa fixed. I‘Jow  define VP by

Vp=(xyPlx). (21)
We then have, for any two permutations Ps and Pu,

(XIP, VPylX>  = <4vP,P,Ix) = vpsp,

= 2 v,aIpoLp,p,Ix)
P

with  the help  of (20). From ( 18) this gives

Gw! y/IX) = & VP aIp,p”“p,Ix). (22)

We may weite  this  result as

v x c VpP", (23)
where  the sign x means an equation in a restricted sense, the
operators  on  the two sides being equal so lang  as they are used only
with  kets of the form PIX> and their conjugate imaginary bras.

The  formula  (23) Shows  that the perturbing energy V is equal, in
the restricted sense, to a linear function  of the Permutation Operators
Pa with  coefficients VP given by (2 1). The restricted sense is adequate
for the calculation of the first-Order  correction  in the energy-levels,
&S this  caleulation  involves only those matrix elements  of V given by
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(22). The formula (23)  is  a very convenient one because the expression
on its  right-hand side is easily handled.

AS an example  of an application  of (23) we shall determine  the
average  energy of all  those states, arising from the unperturbed state
(16),  that belang to one exclusive set. This requires US to calculate
the average eigenvalue of V for those states (17) for  which fhe $s
have specified numerical  values x’. Now the average eigenvalue of
Pa  for any of these states equals that of P"Pa(P")-1  for arbitrary
Pa and thus equals that of n!-l &a PcyP~(P*)-l,  whi&  is x'(P;)  01‘
x’(P*).  Hence the average  eigenvalue of V is  2 VP x’(P).  A similar

P

method could  be used for calculating the average  eigenvalue of any
function  of V, it being necessary only to replace each  Pa by x’(P)  to
perform the averaging.

The number of energy-levels in an exclusive set x = x’ that arise
from a given state of the unperturbed System  is equal to the number
of eigenvalues of the right-hand side of (23) that are consistent  with
the equations x = x’. This number is the number n(x’) introduced
at the end of the preceding section, and is thus just the degree of
degeneracy of the states in this set.

We have assumed that the individual kets lal),  /01~>,...  which deter-
mine the unperturbed state according to (16) are all orthogonal. The
theory tan easily be extended to the case  when some of these kets are
equal, any two that are not equal being still restricted to be orthogonal.
We now have some permutations Pa such that PajX> = IX),
namely those permutations which involve only interchanges of
equal a’s. Equation (20) will now hold if the summation is extended
only over those P's which make P"IX)  different. With this Change
in the meaning of 2, all the previous equations still hold, including

the result (23). For  the present IX)  there will be restrictions  on the
possible numerical  values of the x’s,  e.g. they cannot have those
values  corresponding to 1 X> being antisymmetrical.

58.  Application  to electrons
Let us consider the case  when the similar particles are electrons.

This requires, according to Pauli’s exclusion principle discussed in
$04,  that we take into account onIy the antisymmetrical states. It
is now necessary to make explicit reference to the fact that electrons
have Spins,  which show themselves through an angular momentum
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and a ma@e~ic  ~noment..  The eflect of the sPin on the motion of
an  elechn  in  an  electromagnetic  field  is no t very  great.  There

arc  add%)nd  forces on  the  e]ectron  due  to it.T magnetic  moment,
reqtirbg  additional  terms in the Hamiltonian- The spin angular
~~~en~um  does not have any  (lirect  action  on the mofiony  but  it Comes
into play when there are forces  hnding to rotate t he magnetic moment 9
si..nce  the magnetic  moment  and angular  momentum  are constrained
to be  always  in  the same direction. ln the absence  of a strong
magnefic field these effects art!  &ll srnall,  of the Same  Order  ofmagni-
fude as the corrections  reyuired by relativistic rnechanics, and fhere
would  be no Point in taking them  into account  in. a non-relativistic
theory. Ths importante  ofthe  spin lies  not  in these small effects on the
mofion of the electron, but in thc fact  that  it gives two internal  seates
fo the electron, corresponding to tlic two  possible values  of the spin
component in any assigned  direction,  which  Causes a doubling  in the
number of independent states  ofan  electron.  This fact has far-reaching
consequences when combined with  Pauli’s exclusion  principle.

In dealing with an assembly of electrons  we have  two kinds  of
dynamical variables. The first kind,  which  we may call  the orbital
variddes,  consists of the coordinates X, y,  z of all *he electrons  and
their  conjugate  momenta pz,  pv, pz. The second kind consists of the
Spin  variables, the variables a,,  u#, az,  as introduced  in 8 37, for all
the  eleefrons. These two kinds of variables belang  to different degrees
of freedom. Aocording to s 20 and 21,  a ket fixing the state of fhe
whole System may he of the form IA) IB), where IA > is a ket referring
to the orbital variables alono  and IB>  is a ket referring to the spin
variables alone, and the general  ket fixing  a stete of the whole System
is a sum or integral of kets of this form- This way of looking at.  things
enables us to introduce  two kinds  of Permutation Operators, the first
kind, P say, applying to the orbital variables only  and operating
only  on the factor  IA) and the second.  kind, Pm say, applying only
to the spin variables and operating  dy on the factor  IB).  The PX'S
and Ps  tan  each be applied to any  ket for the whole System, not
merely to certain specid  kets, like  the Pa’s of the preceding  section.
The permutations P fhat  we  have had up to the  present apply to all
the dynamical variables of the pafiicles  concerned,  so for  electrons
they will  apply fo both  the orbital and the Spin  Variables. This  means
thaf e-ach  Pa equals the product

Pa= Papa. (24)
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w’e tan now sec  the need for taking the spin variables into account
when  applying  Pauli’s exclusion  principle, everi if we neglect the  spin
forces in the Hamiltonian. For  any state occurring in nature each
p, must  have the value zt 1, according to whether it is an even or
an odd permutation, so from (24)

PiPZ = -Jg. (25)
The theory of the fhree  preceding sections  would become trivial  if

applied directly fo electrons, for which each  P, = & 1. We may,
however, apply  it to the PX  permutations of electrons. The Pu’s  are
constants of the motion if we neglect the terms in the Hamiltoman
that  arise from the spin forces, since this neglect results in the
Hamiltonian not involving the spin dynamical variables Q at all. The
P’s must then also be constants of the motion. We tan now  intra-
duce new x’s, equal  to the average  of all of the PX’S  in each class,  and
assert that for any permissible set of numerical  values  X‘ for  these X’S
there  will be one exclusive set of states. Thus there exist exclusive Sets
of states  for Systems contG&g  many electrons even when we restritt
ourselves  to a consideration of orily  those states that satisfy Pauli’s
principle. The exclusiveness of the Sets of states is now, of course,
omy approximate, since the x’s are constants only so long as we
neglect the spin forces. There will actually  be a small  probability for
a transition from a state in one set to a state in another.

Equation (25) gives us a simple connexion between the Px’s  and
Po’s,  which means that instead of studying the dynamical variables
Pz  we tan get all the results we Want, e.g. the characters  x’, by
studying the dynamical variables Pu.  The P”‘s  are much  easier to
study on account of there being only two independent states of spin
for each electron. This fact results in there being fewer characters  x’
for the group of permutations of the o-variables than for the group
of general permutations, since it prevents a ket in the spin variables
from being antisymmetrical in more than two of them.

The study of the P”‘s  is made specially easy by the fact that we
tan  express them as algebraic  functions  of the dynamical variables G.
Consider the quantity

0 1 2 = @+a,1 Q-x2+Q  oysf%1%2>  = 9(1+  h t32,>-

With the help of equations (50) and (5 1)  of 3 37 we find readily that
(Ql> %J2  = 67x1 ox2+Ql  5/2+%1  uz2>2  = 3-2(al,  Q, (26)

and hence that
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~gain,  we find

§ 58

and hence 0 12cr,l  = 0x2 012.

Similar  relations hold for a,,  and azl SO that we have

012~1  = Q2012

or o,, 01  OF21  = Q2.

From  this  we tan  obtain with the help  of (27)

O,,a,  0121  = Ql.
These commutation  relations for O,, with cti  and cr2  are precisely the
Same as those for Pr2, the Permutation consisting of the interchange
of the spin variables of electrons 1 and 2. Thus we tan put

where c is a number. Equation (27) Shows  that c = & 1. To deter-
mine which  of these values for c is the correct one, we observe that
the eigenvalues of Pr2  are 1, 1, 1, - 1, corresponding to the fact that
there  exist three independent symmetrical and one antisymmetrical
state  in the spin variables of two electrons, namely, with the notation
of 5 37, the states represented by the three symmetrical functions

f,(4f,k7~a),  49b43(42>~  f,(~~l)fs(~~~)+fg(~~l)f,(~~~),  and the one
antisymmetrieal function ~,(o~~)~‘(u~~) -fs(4)f,(~~~). Thus the mean
of the eigenvalues of Pu is #. Now the mean of the eigenvalues of
(Q~, a2) is evidently zero and hence the mean of the eigenvalues of 012
is 8.  Thus we must have c = + 1, and so we tan put

The formula (29) may conveniently be used for the evaluation of

e2 = iHl+(Ql>  a,)>* (28)

In this way any Permutation Pc consisting simply of an interchange
tan  be expressed as an algebraic  function of the cs’s. Any other per-
mutation Pu tan  be expressed as a product of interchanges and tan
therefore also be expressed as a function of the Q’S.  With the help of
(26) we  tan now express the Px's  as algebraic  functions of the 6’s and
eliminate  the Pu'8  from the discussion.  We have, since  the - sign
must be taken in (25) when the permutations are interchanges and
since  the Square of an interchange is unity,

PF2 = -K1+<%  a2,>* (29)

- - -
b:

!
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the characters  x’ which define the exclusive sets of states. We have,
for example, for the permutations consisting of interchanges,

XI2 = x(JY2)  = -f 1+2l ct  ))n(n- 1) r<t q.9  0, .
If we introduce the dynamical variable s to describe the magnitude of
the total spin angular momentum, + 2 a, in units of 6, through the

formula

in agreement with (39) of 5 36, we have

2 c (Qr>  Qt) = (z: Qr9  c 9)- 2 (Qr9 (Ir)r<t r t r

Hence
= 4s(s+l)-3n.

x12 =-fl+
1

4s(s+l)-3n

1

n(n-4)+4s(s+l)=-
n(n- 1) Zn(n-1)  l

(30)

Thus x12  is expressible as a function of the dynamical variable s and
of n the number of electrons. Any of the other x’s could be evaluated
on similar lines and would have to be a function of s and n only, since
there are no other symmetrical functions  of all the Q dynamical
variables which could be involved. There is therefore one set of
numerical  values x’ for the x’s,  and thus one exclusive set of states,
for each  eigenvalue s’ of S, The eigenvalues of s are

in,  ?+--1,  Qn-2, . . . .
the series terminating with 0 or 4.

We see in this way that each  of the stationary states of a System
with several electrons is an eigenstate of s,  the magnitude in units  ,of
5 of the total spin angular momentum  4 2 cq,  belonging to a def3nite

eigenvalue 8’. For any given s’ there will be 2s’+l  possible values
for a component of the total spin vector  in any direction and these
will correspond to 2s’l+  1 independent stationary states with the Same
energy. When we do not neglect the forces  due to the spin  magnetic
moments these 2s’+ 1 states will in general be Split  up into 2s’+l
states with slightly different energies, and will thus form a multiplet
of multiplicity 2s’+  1. Transitions in which s’ changes,  i.e. transitions
from one multiplicity to another, cannot  occur  when the spin forces
are neglected and will have only a small  probability of occurrence
when the spin forces are not neglected.
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We tan determine  the energy-levels of a System  with several
electrons to the first  approximation by applying the theory of the
preceding section  with the kets Ia”)  referring only to the orbital
variables and using formula (23). If we consider only the Coulomb
forces between the electrons, then the interaction energy V will
consist of a sum of Parts  each  referring to only two electrons, which
will result in all the matrix elements VP vanishing except those for
which PX is the identical Permutation or is simply an interchange of
two electrons. Thus (23) will reduce to

c8 being the matrix element referring to the interchange of electrons
T and s. Since  the Pa's have the same properties as the Px's,  any
function of the Pa's will have the same eigenvalues as the corre-
sponding function of the Px's, so that the right-hand side of (31)
will have the Same eigenvalues as

or K-gw+‘% %)> (32)

from (29). The eigenvalues of (32) will give the flrst-Order  corrections
in the energy-levels. The form of (32) Shows  that a model which
assumes a coupling energy between the Spins of the various electrons,
of magnitude --Qc8(o,,  a,) for the electrons in the r and s orbital
states,  would meet with a fair amount of success. This coupling
energy is much  greater than that of the spin magnetic  moments. Such
models of the atom were in use before the justification by quantum
mechanics was obtained.

We may have two of the orbital states of the unperturbed System
the Same, i.e. the kets I$>  in the orbital variables for two electrons
may be the Same. Suppose jal) and 1~11~)  are the Same. Then we must
take only those eigenvalues of (31) fhat are consistent  with Pf2 = 1,
or  those eigenvalues of (32) that are consistent  with Pf2 = 1 or
P,o,  = - 1. From (28) this condition  gives (q,  a,) = -3, so that
(a,+aJ2  = 0,  Thus the resultant of the two Spins q and o2 is Zero,
which may be interpreted as the Spins q and a2 being antiparallel.
Thus we may say that two electrons in the same orbital state have
their Spins antiparallel. More than two electrons cannot be in the
same orbital state.
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59. An assembly of bosons
WE consider a dynsmical System  composed of u’ similar particles.
We set up a representation for one of the particles with discrete  basic
kets [SJ),  ~cx(~)),  ( J3)),..  . . Then, as explained in 3 54, we get a sym-
metrical representation of the assembly of u’ particles by taking as
basic kets the products

~a~>~cx~>]a~)...~a~~)  = ]+x~a~...L2~0) (1)
in which there is one factor  for each  particle, the suffixes 1, 2, 3,...,  u’
of the a’s  being the labels of the particles and the indices a,  b, c,..., g
denoting indices (l), t2),  (SJ,..  . in the basic kets for one particle. If the
particles are bosons, so that only symmetrical states occur in nature,
then we need to work with only the symmetrical kets that tan be
constructed from the kets (1). The states corresponding to these
symmetrical kets will form a complete set of states for the assembly
of bosons. We tan build up a theory of them as follows.

We introduce the linear Operator 8 defined by

8 = u’!-fr  2 P, (2)
the sum being taken over all the u’! permutations of the u’ particles.
Then S applied to any ket for the assembly gives a symmetrical ket.
We may therefore cal1  8 the symmetrixing  operator.  From  (8) of 3 55
it is real. Applied to the ket (1) it gives

f)J’!--, CP1 &x;  a&&) = S@.xbac...ag), (3)
the labels of the particles being omitted on the right-hand side as
they are no longer relevant. The ket (3) corresponds to a state for
the assembly of u’ bosons with a definite distribution of the bosons
among the various boson states, without any particular  boson being
assigned to any particular  state. The distribution of bosons is speci-
fied if we specify how many bosons are in each boson state. Let
n;,  ni,  nk,... be the numbers of bosons in the states a(l),  CP,  d3),..  .
respectively with this distribution. The n”s are defined algebraically
by the equation

a”+ab+&c+...+c%Q  = n;acl)+n~Lu(2)+n~01(3)+*.. . (4)
The sum of the n”s is of course u’.  The number of n”s is equal to
the number of basic kets j&J>,  which in most applications of the

3596.57 &
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theory is very much greater than u’, so most of the n”s will be Zero.
If CP, CS,  O! ,..., C@  are all different, i.e. if the n”s are all 0 or 1, the
ket (3) is normalized, since in this case the terms on the left-hand
side of (3) are all orthogonal to one another and each contributes
u’!-l  to the squared length of the ket. However, if CP, ~8, &,..., &
are not all different, those terms on the left-hand side of (3) will
be equal which arise from permutations P which merely interchange
bosons in the same state. The number of equal terms will be
n;! na! nk!..., so the squared length of the ket (3) will be

(~a~b~...oLoJX2~~a~boE...d) = n;!.  ni! nk!...  . (5)
For dealing with a general state of the assembly we tan introduce

the numbers n,, n2,  n,,... of bosons in the states &), a(2), G),...
respectively and treat the n’s as dynamical variables or as observ-
ables. They have the eigenvalues 0, 1, 2,..., u’. The ket (3) is a
simultaneous eigenket of all the n’s, belonging to the eigenvalues
6, na,  n&,  . . . . The various kets (3) form a complete set for the
dynamical System  consisting of u’ bosons, so the n’s all commute
(see the converse to the theorem of 6 13). Further, there is only one
independent ket (3) belonging to any set of eigenvalues n;,  na,  nj,...  .
Hence the n’s  form a complete set of commuting observables. If we
normalize the kets (3) and then label the resulting kets by the
eigenvalues of the n’s to which they belong, i.e. if we put

(41 ne! n~!...)-tiSl~“~~o..,~g}  = jn;nina...>, (6)
we get a set of kets In;  na  nk..  .), with the n”s taking on all non-negative
integral values adding up to u’, which kets will form the basic kets
of a representation with the n’s diagonal.

The n’s  tan be expressed as functions of the observables al, az,
qj,..., a,t which defme the basic kets of the individual bosons by
means of the equations

or the equations (8)
holding for any functionf.

Let us now suppose that the number of bosons in the assembly is
not given, but is variable. This number is then a dynamical variable
or observable u, with eigenvalues 0, 1, 2,...,  and the ket (3) is an
eigenket of u belonging to the eigenvalue ZL’. To get a complete
set of kets for our dynamical System we must now take all the
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symmetrical kets (3) for all values of u’. We may  arrange  them in
Order  thus

I), lau>,  XIcy’L&,  XId@w),  .,., (9)

where first is written the ket, with no label, corresponding to the
state with no bosons present, then come the kets  corresponding  to
states with one boson present, then those corresponding to states
with two bosons, and so on. A general state corresponds to a ket
which  is a sum of the various kets (9). The kets (9) arc  all orthogonal
to one another, two kets referring to the same number of bosons being
orthogonal as before, and two referring to different numbers  of bosons
being orthogonal since  they are eigenkets of u belonging  to different
eigenvalues. By normalizing all the kets (9), we get a set of kets  like
(6) with no restriction  on the n”s (i.e. each  n’ taking on all non-
negative integral values) and these kets form the basic kets  of a
representation with the n’s diagonal for the dynamical System  con-
sisting of a variable number of bosons.

If there is no interaction  between the bosons and if the basic kets
l&)>,  ld2’),... correspond to stationary states of a boson, the kets (9)
will correspond to stationary states for the assembly of bosons. The
number u of bosons is now constant  in time, but it need not be a
specified number, i.e. the general state is a Superposition of states
with various values for u. If the energy of one boson is H(a),  the
energy of the assembly will be

c fm = c naHa (10)T a
Flom  (8),  Ha being short for the number H(@).  This  gives  the
Hamiltonian for the assembly as a function  of the dynamical
variables n.

60. The connexion between bosons and oscillators
In 0 34 we studied the harmonic  oscillator, a dynamical sysfem  of

one degree of freedom describable in terms of a canonical Q and p,
such that the Hamiltjonian  is a sum of squares of q and 23,  with
numerical  coefficients. We define  a general oscillator mathematically
as a System  of one degree of freedom describable in terms of a
canonical q and ~p,  such that the Hamiltonian is a power series in p
and ~p,  and remains so if the System  is perturbed in any way. We
shall now study a dynamical System  composed of several of these
oscillators. We tan describe each  oscillator in terms of, instead of
q and p, a complex dynamical variable 7,  like the 7 of 5 34, and its
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conjugate complex +i,  satisfying the commutation relation (7) of
6 34. We attach labels 1, 2, 3 ,... to the different oscillators, so that
the whole set of oscillators is describable in terms of the dynamical
variables Q, Q,,  r13 ,...,  qr,  fZ, q3 ,...  satisfying the commutation
relations

 va  = O,

qa  ?b-qb  ?a = O,

i

(11)

qa  Tb-r)b  qa  = Sah*

Put rln  71a  = na, (12)

so that qa Ta = na-+-l~ (13)

The n’s  are observables which commute  with one another and the
work of 3 34 Shows  that each  of them has as eigenvalues all non-
negative integers. For the ath oscillator there is a Standard ket, IO,>
say, which is a normalized eigenket of na belonging to the eigenvalue
Zero.  By multiplying all these Standard kets together we get a
Standard ket for the set of oscillators,

lO,>P,>  IO,>... = IO, 0,  o,...>,

which is a simultaneous eigenket of all the n’s belonging to the
eigenvalues Zero. The Standard ket (14) will be much  used in the
future and will be denoted simply by )s. From (13) of 5 34

+ia>S= O (15)
for any a. The work of $ 34 also Shows  that, if n;,  ni,  na,... are any
non-negative integers, (16)
is a simultaneous eigenket of all the n’s belonging to the eigenvalues
n;, nk,  na,... respectively.  The various kets (16) obtained by taking
different n”s form a complete set of kets all orthogonal to one another
and the Square of the length of one of them is, from (16) of fj 34,
n;!  nk!  nj!...  . From this we see, bearing in mind the result (5),  that
the kets ( 16) have just the same properties as the kets (9),  so that
we tan  equate each  ket (16) to the ket (9) referring to the Same n’
values without getting any inconsistency. This involves putting

51 d-%b&..~g>  = qa Yb Tc...r)g)~. (17)
The Standard ket >x  becomes  equal to the first of the kets (9),  corre-
sponding to no bosons present.

The effect of equation (17) is to identify the states of an assembly
of bosons with the states of a set of oscillators, This means that the
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dynamical system consisting of an assembly of similur  bosons is equiva-
lent to the dynamical system consisting of a set of oscillators-the two
systems  are just the same system looked at from  two different  Points  of
view. There is one oscillator associated with each  independent boson
state. We hsve here one of the most fundamental results of quantum
mechanics, which  enables a unification  of the wave and corpuscular
theories of light to be effected.

Our work in the preceding section was built up on a discrete set
of basic kets Ia”>  for a boson. We could pass to a different discrete
set of basic kets, /PA) say, and build up a similar  theory on them.
The basic kets for the assembly would then be, instead of (9),

I>>  IßA>> SlßAßB>,  slßAß*ßc>, *‘** (18)

The first of the kets (18),  referring to no bosons present, is the same
as the first of the kets (9). Those kets (18) referring to one boson
present are linear functions of those kets (9) referring to one boson
present, namely

IßA>  = c Ie+alßA>> w-9
u

and generally those kets (18) referring to u’ bosons present are linear
functions of those kets (9) referring to u’ bosons present. Associated
with the new basic states [ß”)  for a boson there will be a new set
of oscillator variables TA, and corresponding to (17) we shall have

slßAßBßc**~>  = 7s TB ~C*-)S* (20)

Thus a ket TA T~...)~  with u’ factors  TA,  qB,...  must be a linear func-
tion of kets 7a Q...)~  with  %’  factors qa,  Yb,...  . It follows that each
linear Operator TA must be a linear function of the ya’s.  Equation
( 19) gives

‘lA)S  = ; r],>dua  IßA>

and hence TA = 1 ~,<aalßA>. (21)
u

Thus the 7’s  transform according to the same law us the basic kets for
a boson. The transformed $s satisfy, with their conjugate complexes,
the Same commutation relations (11) as the original ones. The trans-
formed 7’s  are on just the Same footing as the original ones and hence,
when we look upon our dynamical System  as a set of oscillators, the
different degrees of freedom have no invariant significance.

The 3’s  transform according to the Same law as the basic bras for
a boson, and thus the same law as the numbers {@lx) forming the
representative of a state x. This similarity People  often describe by
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saying that the +ja’s  are given by a process of second  quantization
applied to (cualx),  meaning thereby that, after one has set up a
quantum  theory for a Single  particle and so introduced the numbers
(aalx)  representing a state of the particle, one tan make these num-
bers into linear Operators satisfying with their conjugate complexes
the correct commutation relations, like (ll),  and one then has the
appropriate mathematical basis for dealing with an assembly of the
particles,  provided they are bosons. There is a corresponding proce-
dure for fermions, which  will be given in $ 65.

Since an assembly of bosons is the same as a set of oscillators, it
must be possible to express any symmetrical function of the boson
variables in terms of the oscillator variables 7 and 77. An example
of this is provided by equation (10) with ya  +ia  substituted for n,.
Let us sec  how it goes in general. Take first the case  of a function
of the boson variables of the form

v, = 2 v-9r (22)
where each VP  is a function only of the dynamical variables of the
rfh boson, so that it has a representative (ag/ V,]&  referring to the
basic  kets Ic$)  of the rth  boson. In Order  that UF may be symmetrical,
this  representative must be the same for all r, so that it tan  depend
only on the two eigenvalues labelled by a and b. We may therefore
tvrite  it

<4VJl&  =  (~aIWb>  =  WJlb

for brevity. We have
(23)

V,~C@@...) = 2 l**..a~..)(alUlxJ. (24)

Summing this equation for ai values of r and applying the sym-
-metrizing  Operator 6’  to both sides, we  get

SV,/*  e...)  = 2 2 S(* @..@..)(al  U  IX,). (25)

Since Ur  is symmetrical we  ckl replace XU, by UT S and tan then
Substitute for the symmetrical kets in (25) their values given by (17).
We get in this way

UT 7x1 yxa** l >⌧ = z 7 ‘la  TG%xi  Yx2.**>SCa  I ulx~>

=
2 c

‘la ?+?xI  ~x&S  Sb,(al  Ulbh (26)
r

~;,l  meaning that the factor  r], must be cancelled out. Now from
(15) and the commutation relations (11)

qb  r)xl  ?xp”* k!3  = T ~jcr’~2.1  ~x&Y  8bx, (27)
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(note that ?jb  is like the Operator of partial differentiation  a/aqb),  so
(26) becomes

The kets vS1  qZZ.  .  .>s form a complete  set, and hence  we tan infer from
(28)  the Operator equation

uT  = 2 ~&IUlb)ri,- (29)
a b

This gives us Ur  in terms of the 7 and q variables and the matrix
elements (a 1 U Ib).

New let us take a symmetrical function of the boson variables
consisting of a sum of terms each  referring to fwo bosons,

vr =,zrK?. (30)

We do not need to assume V, = $&.  Corresponding to (23),  KS has
matrix elements

<~:~:I’cT,l4~8>  = W’VIcd~ (31)
for brevity. Proceeding as before we get, corresponding to (25),

SV, Jo11’01~~ . ..> =,&  2 sl~~~~..~T..~sb..)(abiVlx,x,) (32)

and corresponding to (26)

We tan deduce as an extension of (27)

rit 5% rlx, rlxph =T2Jf713;11)x1  r)XPh  s,X,s,~
>

so that (33) becomes

giving us the Operator equation
f$= ~~~~~~b(ablvlcd>r~~. (35)

The method tan readily be extended to give any symmetrical func-
tion of the boson variables in terms of the 7’s  and 7’s.

The foregoing theory tan easily be generalized to apply to an
assembly of bosons in interaction  with some other dynamical  System,
which  we shall  cal1  for definiteness the atom. We must introduce a
set of basic  kets, 14’) say, for the atom alone. We tan  then get a set
of basic kets for the whole System  of atom and bosons together by
multiplying each  of the kets 15’) into each  of the kets (9). We may
write these kets

J(y), JfS’aa>,  XJ&Pab),  q&Paw),  .  .  .  . (36)



2 3 2 THEORY OF RADIATION Q  60

We may look upon the System  as composed of the atom in interaction
with a set of oscillators, so that it tan be described in terms of the
atom variables and the oscillator variables qa, 7jcL.  Using again the
Standard ket )s for the set of oscillators, we have

Sl5’ &a,bd..  .) = ‘la qb qc..  .)S 1 <‘), (37)
corresponding to (17), as the equation expressing the basic  kets
(36) in terms of the oscillator variables.

Any function of the atom variables and boson variables which is
symmetrical between all the bosons is expressible as a function of the
atom variables and the 9’s and 3’s.  Consider first a function UT of
the form (22) with U7  a function only of the atom variables and the
variables of the rth boson, so that it has a representative (<‘cw:  1 U,i{“&.
This representative must be independent of r in Order  that Ur  may
be symmetrical between all the bosons, so we may write it
((‘aalVl&b). NOW e us define (u] V Ib) to be that function of the1 t
atom variables whose representative is ({‘cl~fl  J VI<“&,  so that we have

~5’a;QIw’a+>  = ~5’@lJT’~b>  = ~5’l<~l~l~>lr’>, (38)
corresponding to (23). The equations (24)-( 28) tan now be taken over
and applied to the present work if both sides of all these equations
are multiplied by l<‘>  on the right, with the result that formula  (29)
still holds. We tan deal similarly with a symmetrical function VT of
the form (30) with I& a function only of the atom variables and the
variables of the rth  and 8th bosons. Defining (ab1  Vlcd) to be that
function of the atom variables whose representative is

<r4%Iw’ay&,
we find that formula (35) still holds.

61. Emission and absorption of bosons
Let us suppose that the oscillators of the pre‘ceding  section are

harmonic  oscillators and there is no interaction between them. The
energy of the ath oscillator is then, fiom (5) of 3 34,

Hu  = nco,  rja +-,+ -@oJ,.

We shall neglect the constant  term &fiw,,  which is the energy of the
oscillator in its lowest state-the so-called ‘Zero-Point energy’. This
neglect does not have any dynamical consequences, as explained at
the beginning of 3 30, and merely involves a redefinition of lia.  The
total energy of all the oscillators is now

HT=CHa=Cnwa~,9,-Cfio,n, (39’
a a a
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with the help of (12). This is of the same form as (lO),  with &w, for
Ha. Thus a set of harmonic  oscillators is equivalent  to an assembly of
bosons in stationary states with no interaction between them. .If  an
oscillator of the set is in its n’th quantum  state, there cire  n’ bosons in
the associated boson state.

In general the Hamiltonian for the set of oscillators will be a power
series in the variables qa, qa, say

HT  = HP+  C.(uQYafüarja)+  z (u,,rlnrib+~7larlb+~briajjb)+...l
a

(40)

where HP, Uk,  Unb, & are numbers, TYP  being real and Ud = Übn. If
the set of oscillators are in interaction with an atom, as we had at
the end of the preceding section,  the total Hamiltonian will still be
of the form (40),  with HP, &, Uab, Vub  functions  of the atom variables,
HP in particular  being the Hamiltonian for the atom by itself. A
general  treatment of this dynamical  System  would be rather compli-
cated and for practical applications one assumes that the terms

HP+ 2 Uaarlu+ia
a

(41)

are large compared with the others and form by themselves an
unperturbed System,  the remaining terms being taken into account
as a perturbation producing transitions in the unperturbed System,
according to the theory of $44. If, further,  U, is independent of the
atom variables, the unperturbed System  with Hamiltonian (41) con-
sists merely of an atom with Hamiltonian HP and an assembly of
bosons in stationary states with Hamiltonian of the form (39),  with
no inferaction.

Let us consider what kinds of transitions are produced  by the
various perturbation terms in (40). Take a stationary state of the
unperturbed System  for which  the atom is in a stationary state, 5’  say,
and bosons are present in the stationary boson states, a, b, c,. . . . This
stationary state for the unperturbed System  corresponds to the ket

37a  rlb  ~c~~->X15’)~ (42)

like (37). If the term Uz qz of (40) is multiplied into this ket, the
result is a linear combination of kets like

rlz  ‘la  rlb  77c~*)Xl~“~~ (43)

5” denoting any stationary state of the atom. The ket (43) refers to
one more boson than the ket (42),  the extra boson being in the state x.
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Thus the perturbation term UZ 7Z  gives rise to transitions in which
one boson is emitted into state x and the atom makes an arbitrary
jump. If the term ÜZ & of (40) is multiplied into (42), the result is
zero unless (42) contains a factor  7s and is then a linear combination

referring to one boson less in state x. Thus the perturbation term
üZ +jZ  gives rise to transitions in which one boson is absorbed from
state x, the atom again  making an arbitrary jump. Similarly, we find
that a perturbation term U,,  qZ  qV (x # y) gives rise to processes in
which a boson is absorbed from state y and one is emitted into state
x, or, what is the same thing physically, one boson makes a transition
from state y to state x. This  kind of process would be produced  by
a term like the V,  of (22) and (29) in the perturbation energy, pro-
vided  the diagonal elements (a 1 Ula) vanish. Again, the perturbation
terms VW  yZ  rly, ‘$&,  ri,c  +&,  give rise to processes in which two bosons are
emitted or absorbed, and so on for more complicated terms. With
any of these emission and absorption processes the atom tan make
an arbitrary jump.

Let us determine how the probability of occurrence of each  of these
transition processes depends on the numbers of bosons originally
present in the various boson states. From $5 44, 46 the transition
probability is always  proportional to the Square  of the modulus of
the matrix element  of the perturbation energy referring to the two
states concerned. Thus the probability of a boson being emitted into
state x with the atom making a jump from  state 5’ to state c”  is
proportional to

I~f”l~~~~~..~~~+~~~~I~r~l~~~$..~~..>15’>12, (44)
the n”s being the numbers of bosons initially present in the various
boson states. Now from (6) and (17), with reference to (4),

In;nin&..} = (n;!  nk! n~!...)-~7j~~~~$$i..)S, (45)

so that q,I<n~..n~..>  = (n~+l)~ln;n~..(n~+l)..). (46)
Hence (44) is equal  to

@5+1Kv?I&3121 (47)
showing that the probability of a transition in which a boson is emitted
into state x is proportional to  the number of bosons originally  in stute  x
plus one.
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The probability of a boson being absorbed f!rom state x with the
atom making a jump from state 5’  to state 5” is proportional fo

I{l.yI(n;n;..(n;- 1)..~ü~7j,ln;n~..n~..)~~‘)~2, (48)
the n”s again being the numbers of bosons initially present in the
various boson states. Now from (45)

+j&./n;n&..njc..>  = n~*In;n~..(n~-l)..)S, (49)
so (48) is equal to 4(5”1  QKY2. (50)
Thus the probability of a transition  in which a boson is absorbed from
stute x is proportional to the number of bosons originally  in stute X.

Similar methods may be applied to more complicated processes,
and show that the probability of a process in which a boson makes
a transition from state y to state x (x # y) is proportional to nL(njc+  1).
More generally, the probability of a process in which bosons arc
absorbed from states x, y,... and emitted into states a, b,... is propor-
tional to ‘n,nb...(na+  l)(ng+  1) . . . . (51)
the n”s being in each  case  the numbers of bosons originally present.
These results hold both for direct transition processes and transition
processes that take place through one or more intermediate states,
in accordance with the interpretation given at the end of fj  44.

62. Application to photons
Since  photons are bosons, the foregoing theory tan be applied to

them. A Photon is in a stationary state when it is in an eigenstate
of momentum. It then has two independent states of polarization,
which may be taken to be two perpendicular  states of linear polariza-
tion. The dynamical variables needed to describe the stationary
states are then the momentum  p, a vector, and a polarization  variable
1, consisting of a unit vector perpendicular  to p. The variables p and
1 take the place of our previous a’s. The eigenvalues of p consist of
all numbers from ---CO  to CO for each  of the three Cartesian com-
ponents of p, while for each  eigenvalue p’ of p, 1 has just two
eigenvalues, namely two arbitrarily Chosen  vectors perpendicular
to p’ and to one another. Owing to the eigenvalues of p forming
a continuous range, there are a continuous range of stationary
states, giving us the continuous basic  kets [pl’).  However, the fore-
going theory was built up in terms of discrete  basic kets Ia’) for a
boson. There are two formalisms which one may use for getting over
this discrepancy.
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The first consists in replacing the continuous three-dimensional
distribution of eigenvalues for p by a large number of discrete Points
lying very close  together, forming a dust spread over the whole three-
dimensional p-space. Let sPt  be the density of the dust (the number
of Points  per unit volumc) in the neighbourhood of any Point  p’.
Then sPP  must be large and positive, but is otherwise an arbitrary
function  of p’. An integral over the p-space may be replaced by a
sum over the dust of Points,  in accordance with the formula

ISS f(p’) d&4&dpß  = ~.~~P’)s& (52)

which formula provides the basis of the passage from continuous p’
values to discrete ones and vice versa. Any Problem  tan  be worked
out in terms of the discrete p’ values, for which the theory of $8  59-61
tan be used, and the results tan be transformed back to refer to con-
tinuous p’ values. The arbitrary density sP, should then disappear
from the results.

The second  formalism consists in modifying the equations of the
theory of 6s 59-61 so as to make them apply to the case  of a con-
tinuous range of basic  kets ja’>,  by replacing sums by integrals and
replacing the 8 Symbol  in the commutation relations (11) by 6 func-
tions, so far as concerns the variables with continuous eigenvalues.
Esch of these formalisms has some advantages and some disadvan-
tages.  The first is usually more convenient for physical discussion,
the second for mathematical development. Both will be developed
here and one or other will be used according to which is more suitable
at the moment.

The Hamiltonian describing an assembly of photons interacting
with an atom will be of the general  form (4O),  with the coefficients
HP, Ua,  U&  cb  involving the atom variables. This Hamiltonian may
be written HT = Hp+H&+HR>
where HP is the energy of the
assembly of photons alone,

atom alone, HR is the energy of the *

(54)

vpt being the frequency of a Photon of momentum  p’, and HQ is the
interaction energy, which tan be evaluated from analogy with the
classical theory, as will be shown in the next section.  The whole
System  tan  be treated by a perturbation method as discussed in the
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preceding section, HP and H’ providing the energy (41) of the
unperturbed System  and Ho being the perturbation energy, which
gives rise to transition processes  in which photons are emitted and
absorbed and the atom jumps from one stationary state to another.

We saw in the preceding section that the probability of an absorp-
tion process is proportional to the number of bosons originally in the
state from which a boson is absorbed. From  this we tan  infer that
the probability of a Photon  being absorbed from a beam of radiation
incident on an atom is proportional to the intensity of the bea.m.
We also saw that the probability of an emission process is propor-
tional to the number of bosons originally in the state concerned plus
one. To interpret this result we  must make a careful study of the
relations involved in replacing the continuous range of Photon states
by a discrete  set.

Let us neglect for the present the polarization variable 1. Let
Ip'D) be the normalized ket corresponding to the discrete  Photon
state p’. Then from (22) of $ 16

2 IP’DXP’DI  = 12
P ’

which gives from (52)

I
~p'~)(p'~~~~4l~p'  = 1, (55)

d3p'  being written for dpkdp;  dpß, for brevity. Now if 1 p’) is the basic
ket corresponding to the continuous state p’, we have according to
(24) of 8 16

s t p’xp t d3p’  = 1,

which Shows,  on comparison with (551,  that *

tp') = jp'D)S$. (56)

The connexion between 1 p’> and ) P'D)  is like  the connexion between
the basic  kets when one changes  the weight function of the representa-
tion, as shown by (38) of $ 16.

With n’p,  photons in each  discrete  Photon  state p’, the Gibbs
density p for the assembly of photons is, according to (68) of 3 33,

p = 3 /p'D)&<p'~/ - f fp'D)&(p'Dlspt  d3p’

= tp’)&(p’t  d3p’
s (57)

with the help of (56). The number of photons per unit volume in the
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neighbourhood of any Point  x’ is then (x’lp  1 x’), according to (73)
of $33. F’rom  (57) this equals

(x’lpjx’)  = 1 (x’~p’)n;~(p’~x’)  d3p’

= s h-3n;t  d3p’ (58)

if one puts in the value of the transformation function  (x’ 1 p’) given
by (54) of 8 23. Equation (58) expresses the number of photons per
unit volume as an integral over the momentum  space, so the inte-
grand in (58) tan be interpreted as the number of photons per unit
of Phase  space. We obtain in this way the result that the number of
photons per unit of phuse space is equul  to h-3  times the number of
photons per discrete Stute, in other words, a cell of volume h3  in Phase
space is equivalent to  a discrete Stute. This result is a general one,
holding for any kind of particle.  If the polarization variable of the
photons is not neglected, the result holds for each  of the two indepen-
dent states of polarization.

The momentum  of a Photon  of frequency v is of magnitude hv/c,
so the element of momentum  space

dpz  dp,  dpz = h3c-3v2  dvdw,

dw being an element of solid angle for the direction of the vector  p.
Thus a distribution of photons with r(., per discrete state, which  is
equivalent to a distribution of h-%(,d3pd3x photons in an element
of volume d3x  and an element of momentum  space d3p,  equals a
distribution of np c-~v~  dvdod3x  photons in an element of volume d3x
and a frequency range du and direction of motion du.  This corre-
sponds to an energy density ni hc-53 per unit solid angle per unit
frequency range, or an intensity per unit frequency range (i.e. an
energy crossing unit area per unit time per unit frequency range) of
amount IV  = n’p  hv3/c2. (59)

The result that the probability of a Photon  being emitted is pro-
portional to nbl+  1, nb, being the number of photons initially present
in the discrete state concerned, tan now be interpreted as the proba-
bility being proportional to IV,+hv3/c2,  where IV1 is the intensity of
the incident radiation per unit frequency range in the neighbourhood
of the frequency of the emitted Photon and having the same polariza-
tion 1 as the emitted Photon.  Thus with no incident radiation there
is still a certain amount of emission, but the emission is increased or
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stimuhted  by incident radiation in the same direction and having the
Same frequency and polarization as the emitfed radiation. The
present theory of radiation thus completes the imperfect one of 3 45
by giving both stimulated and spontaneous emission. The ratio it
gives for the two kinds of emission, namely IV1  : hv3/c2, is in agreement
with that provided by Einstein’s theory of statistical equilibrium
mentioned in $45.

The probability of a Photon being scattered from the state p’l’ to
the state p”i”  is proportional to ~~~(n~~~~+l), the n’s  being the
numbers of photons initially in the discrete  states concerned. We tan
interpret this result  as the probability being proportional to

1,1~(1,1*+hv”3~c2). (60)
Similarly for a more general radiative process in which  several
photons are emitted and absorbed, the probability is proportional
to a factor  IV1 for each  absorbed Photon  and a factor  Iv,+hv3/c2  for
each  emitted Photon. Thus the process is stimulated by incident
radiation in the same direction and with the same frequency and
polarization as any of the emitted photons.

63. The interaction  energy between photons and an atom
We shall  now determine the interaction  energy between an atom

and an assembly of photons, i.e. the EQ of equation (53),  from
analogy with the classical expression for the interaction  energy
between an atom and a field of radiation. For simplicity we shall
suppose the atom to consist of a Single  electron moving in an electro-
static  field of forte. The field of radiation may be described by a
scalar  and a vector  potential. These Potentials are to a cerfain extent
arbitrary and may be Chosen  so that the scalar  potential vanishes.
The field is then completely described by the vector  potential A,,  A,,
A,, or A. The Change that the field Causes in the Hamiltonian
describing the atom is now, as explained at the beginning of $41,

HQ  = &((P+;A~-P~}  = ;&A)+&A2. W

This is the classical interaction energy. The A that occurs here should
be the value of the vector  potential at the Point  where the electron is
momentarily situated. It is, however, a good enough approximation
if we take this A to be the vector  potential at some fixed Point  in the
atom, such as the nucleus,  provided we are dealing with radiation
whose wavelength is large compared with the dimensions of the atom.

.
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Let us first consider the field of radiation classically and ignore its
interaction  with the atom. The vector potential A satisfies, according
to Maxwell’s theory, the equations

q A=o, divA  = 0, (62)

0 being short for a2/c2  at2-a2/ax2-a2/ay2-a2/ax2.  The first of these
equations Shows  that A tan be resolved into Fourier components in
the form

A ZZ
S{

A
k

e-i<kx)+2nivk  t+K,  &%+2niJ’kl)  @k,
VW

each Fourier component representing a train of waves moving with
the velocity  of light, described by a vector k whose direction gives
the direction of motion of the waves and whose magnitude 1 k 1 is
connected with their frequency vk by

2nvk = clkl. (64)

The vector k is just the momentum  of a Photon which the quantum
theory would associate with these waves, divided by fi. For each
value of k we have an amplitude A,,  which is in general a complex
vector, and the integral in (63) extends over the whole of the three-
dimensional k-space. The second of equations (62) gives

(k Ak)  = 0, (65)

showing that for each  value of k, A, is perpendicular to k. This
expresses that the waves are transverse waves. A, is determined by
its two components in two directions perpendicular  to each  other and
to k, these two components corresponding to two independent states
of linear polarization.

The total energy of the radiation is given by the volume integral

HR = (sn)-1  1 (&i2+J%2)  d3x 036)

taken over the whole of space,  where the e!ectric field e and the
magnetic  field .W  of the radiation are given by

g+a$, & = curl  A. (67)

Using Standard formulas of vector analysis, we have

div[A  x ;sl]  = (.#, curl  A)- (A, curl  &) = a2- (A, curl curl  A)

= W-+(A, V2A)

with the help of the second of equations (62). Thus (66) becomes,
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with neglect of a term which  tan be transformed to a swrfaoe  integral
at infinity,

HR = (Sn)-1 J [-$(g,  g) -(A,  VA)) dk (68)

By substituting for A here its value given by (63),  we tan get the
energy of the radiation in terms of the Fourier amplitudes A,. The
energy of the radiation is constant  (since we are now ignoring the
interaction of the radiation and the atom), so in this calculation wb
may take t = 0.  This means taking

A =
f

(Ak  +Äwk)e-d(kxJ  d3k, (69)

V2A = - k2(Ak+Ä-k)&(kx)  dsk,
f

aA/at  = ic
I 1 k~(Ak-Ä&?-iCkx~  d3k. (70)

Inserting these expressions in (68),  we get

HR  = (8n-)-1  SS/  (k’2(&+x-k,  &+Ä-kp)-
/

- 1 kl 1 k’ 1 (Ak-Ä+,  AL.-Ä-k’))e-ickx)e-~(k’x)  d%Pk’dQ

=77 2
SS{ k’2(Ak+Ä-k, Ak’+Ämk’)-

- 1 kl Ik’I(A,-Ä-,,  Akt--Ä-,)}S(k+k’)  d3kd3k’,

with the help of formula (49)  of 3 23, 6(k+ k’) being the product  of ‘,k,l
’ three factors,  one for each  component of k. Hence

HR  = 7~~
s k2((Ak+Ä-,, A-,+Ä,)-(&-Ä-k,  A-k-A;k)} d3k

= .2n2 I k2((Ak,  Äk) + (A-k,  Ä-k)}  d3k
.

= 479 s k2(Ak,  &) d3k. . (71)

We tan replace the continuous distribution of k-values by a dust of
discrete k-values,, like we did with the p-values in the preceding
section.  The integral (71)  then goes over, according to formula (52),
into the sum HR  = 47~~  z k2(&,  Ä&i$ ‘

$k being the density of the discrete k-values. We may  also weite
this as HB = 4rr2 T

k2A kl  st&  sl;‘, (72)
k

A,,  being a component of A, in a direction  1 perpendicular to k and
3596.67 R



242 THEORY OF RADIATION 9 63

the summation with respect to 1 referring to two directions 1 perpen-
dicular to each other. Thus there is one ferm in (72) for each inde-
pendent stationary state for a Photon.

The field quantities &! and J# at any Point x tan be looked upon
as dynamical variables. The quantities

A - A kl  e2nh  t
klf  - > xku = Äkl  e-27ht

are then dynamical variables at time t, since they are connected with
& and J!+ at various Points x at time t by equations which do not
involve t, as follows from (63) and (67). dkr is constant, so Aku varies
with t according to the simple harmonic law. Thus ~4,,~ is like the Tl
of a harmonic oscillator, defined by (3) of 3 34, the w of the oscillator
being 27fvk.  we may taks each A, to be proportional fo the vr of
some harmonic oscillator and then the field of radiation becomes a
ast of harmonic oscillators.

Let us now pass over to the quantum theory and take the AkU, Akrt
to be dynamical variables in the Heisenberg picture. The expression
(72) for the energy may be retained unchanged, the Order  in which
the factors A,, Akl there occur being the oorrect one to give no zero-
Point energy. The A,,, then still vary with time according to the dwt
law and may still be taken to be proportional to the qt’s of harmonic
oscillators. The factor  of proportionality may be obtained  by equat-
ing (72) to the expression (39) for the energy, with the label a replaced
by the two labels k and 1 and with hvk for &J,. This gives

d7T2 k2Ak,t  &U 6’  = 7 hvk Tk,t qklb
4k k

the suffix t being inserted to Show  that we are dealing with Heisenberg
dynamical variables (as we should when transferring equations of the
classical theory to the quantum theory). Hence, using (64),

h2A, = Ch+‘k’qkn  St, (73)

with neglect of an unimportant arbitrary Phase  factor. In this way
the Heisenberg dynamical variables ykUj which describe the field of
radiation as a set of oscillators, arc introduced. The commutation

 between the ?jkU and ?jkU are known, being given by (1 l), so
equation (73) fixes the commufation relations between fhe Ak,t  and
Ak,. It thus fixes the commutation  relations between the Potentials
A and the field quantities 42 and .H at various Points x at the time t.

(Incidentally, the commufation relations of the Akl,  Akl are fixed,
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so the commutation relation of two potential or field quantities at
two different times is also fixed.)

We tan still use (73) when the interaction between the field of
radiation and the atom is taken into account. This involves assuming
that the interaction does not affect the commutation relations
between the Potentials and field quantities at a given time. The
interaction Causes the qklt ‘s to cease to vary according to the simple
harmonic law and the oscillators to cease to be harmonic. Thus it
may affect the commutation relation between two potential or field
quantities at two different times.

We tan now take over the interaction energy (6 1) into the quantum
theory, putting pt for p to show it is a Reisenberg dynamical variable.
Taking the atomic nucleus  to be at the origin we get, by substituting
(63) with x = 0 into (61),

eHQf= mc
s

(Pt~Ak,+AW)  d3k +

+e2
2mc2

(AW+&,  A,,+A,[)  d3kd3k’

= -f-
c

mc  k

(pt, A,+&&l  + $$c (AW+&,  Aw+&&lG1
k k

if we pass from continuous to discrete  k-values. Thus

pIt being the component of pt in the direction 1. With the help of (73)
we may express HQi  in terms of the qkU and +j,&,  and we tan  then drop
the suffix t (which  means going over to Schrödinger dynamical
variables), so that we obtain finally

With the model of the atom we are using, the interaction energy
appears as a linear plus a quadratic  function in the 7’s and ij’s.  The
linear terms give rise to emission and absorption processes,  the
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quadratic ones to stattering processes and processes in which two
photons are absorbed or emitted simultaneously. The Order  of the
factors 77  and +j in the quadratic terms is not determined by the
procedure of working from the classical theory, but this Order  is
unimportant, since a Change in it merely changes  Ho  by a constant.

The matrix element of HQ referring to the emission of a Photon
into the discrete state kl, or into the discrete state p’l,  as it may also
be labelled, with the atom jumping from statte cx”  to state a’,  is

since sk  = s,g3.  The pp1 occurring here, referring to the momentum
of the electron, is, of course, quite distinct  from the other letters  p,
referring to the momentum  of the emitted Photon.  To avoid con-
fusion we shall replace the electron momentum  p by mk, these two
dynamical variables being the sa,me for the unperturbed atom. Pass-
ing over to continuous Photon states by means of the conjugate
imaginary of equation (56), we get

(75)

Similarly, the matrix element of HQ referring to the absorption of a
Photon from the continuous state ~01  with the atom jumping from
statt ao to state LY’  is

(76)

and the matrix element referring to the stattering  of a Photon from
the continuous state pOl” to the continuous state p’l’ with the atom
jumping from state ~8 to state a’ is

(p’l’a’ 1 HQ 1 p”locuo> = 2*hZ~vo~,‘t  wo>  kxw~ (77)

there being two terms in (74) which contribute to it. These matrix
elements will be used in the next section.  The matrix elements
referring to the simultaneous absorption or emission of two photons
may be written down in the same way, but they lead to physical
effects too small to be of practical importante.

64. Emission, absorption, and stattering  of radiation
We tan now determine directly the coefficients of emission, absorp-

tion, and stattering  of radiation by substituting in the formulas of
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Chapter VIII the values for the matrix elements given by (75), (76),
and (77).

For determining the emission probability we tan use formula
(56) of $53. This Shows  that for an atom in a state ao the proba-
bility per unit time per unit solid angle of its spontaneously emitting
a Photon and dropping to a state 01’ of lower energy is

Now the energy and momentum  of a Photon of frequency 1,  are

w = hv, P = hvJc.

Again, from the Heisenberg law (20) of 3 29,
(a'lqx0)  = -2~i~(ol~cy')(cII'~x~~~~),

y(~llOa’) being the frequency connected with transitions from state ao
to state 01’,  which in the present case  is just the frequency Y of the
emitted radiation. These results substituted in (78) make the emis-
sion coefficient reduce to

To obtain the rate of emission of energy per unit solid angle for a
specified polarization, we must multiply this by hv. This gives for
the total rate of emission of energy in all directions

which is in agreement with expression (34) of 3 45 and justifies Heisen-
berg’s assumption for the interpretation of his matrix elements.

In the same way the absorption coefficient, given by formula
(59) of 3 53, becomes for photons

This absorption coefficient refers to an incident beam of one Photon
crossing unit area per unit time per unit energy range. If we take
one per unit frequency range instead of energy range, as is usual
when dealing with radiation, the absorption coefficient becomes

This result is the same as (32) of $45, if we Substitute for the EV
there the energy hv  of a Single  Photon.  Thus the elementury  theoq
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of 3 45, in which the radiation field is treated us an external perturba-
tim, gives  the correct valsue  for the absorption coeficient.

This  agreement between the elementary theory and the present
theory could be inferred from general arguments. The two theories
differ  only in that the field quantities all commute  with one another
in the elernentary  theory and satisfy definite commutation relations
in the present theory, and this differente  becomes unimportant for
strong fields. Thus the two theories  must give the same absorption
and emission when strong fields are concerned. Since  both theories
give the rate of absorption proportional to the intensity of the inci-
dent beam, the agreement must hold also for weak fields in the case  of
absorption. In the Same way the stimulated part of the emission in the
present theory must agree with the emission in the elementary theory.

Let us now consider stattering.  The direct stattering coefficient is
given by formula (38) of $50. Such stattering  of photons will not be
accompanied by any Change of state of the atom on account of the
factor  6,,  in the expression for the matrix element (77).  Thus the
final energy w’ of the Photon  will equal its initial energy Wo.  The
stattering  coefficient now reduces  to

e4/rn2c4.  (1’1°)2.

Tbis  is the same as that given by classical mechanics for the stattering
of radiation by a free electron.  We thus see that the direct scatter-
ing of radiation by an electron  in an atom is independent of the atom
and is correctly given by the classical theory. This result, it should
be remembered, holds only provided the wavelength of the radiation
is large compared with the dimensions of the atom.

The direct stattering  is a mathematical concept and cannot be
separated out experimentally from the total stattering,  given by
formula (44) of fs 61. Let us see what this  total stattering  is in the
case  of photons. We must be careful in our application  of formula
(44)  of $51. The summation 2 in this formula may be considered as

k

representing the contribution  to the stattering  of double transitions
consisting of transitions firstly from the initial state to state E and
secondly from  state k to the final state. The first  transition may be
an absorption of the incident Photon and the second an emission of
the required scattered Photon,  but it is also possible for the flrst
transition to be the emission and the second the absorption. It is
clear  from  the general nature of the method used for deriving formula

_--
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(44) of 5 51 that both these kinds of double transitions must be in-
cluded in the summation 2 when this formula is applied to photons,

k
although only the first of them appears in the actual  derivation given
in 0 51, as the possibility of the particle  being created or annihilated
was not taken into account there.

We use Zero,  Single  Prime,  and double prime to refer to the initial,
final, and intermediate states of the atom respectively, and Zero and
Single  Prime  to refer to the absorbed and emitted photons respec-
tively. Then, for the double transition of absorption followed by
emission, we must take for the matrix elements

(wlP”~oh CP’4  IV9
of the formula (44) of $ 51

(klVlp%O)  = (a”lHQ~po1%0), (p’d/VIE)  = (p’l’dIH*lol”).

Also E’ - Eh = hv”+&(a0)-&(a”)  = quo-v(a”aO)],
where hv(a”a0) = Hp(a”)-Hp(a0).

Similarly, for the double transition of emission followed by absorption
we must take

(EIVlpW)  = (p’l’a”lH*~aO), (p’cx’IVlk>  = (a’~HQlpwY”>
and

El---E, = I2v”+Hp(~“)-Hp(~“)-~v~-~v’ = -h[v’+v(a”aO)],
c

there being now two photons, of frequencies ~0  and v’, in existente
for the intermediate state. Substituting in (44) of $51 the values of
the matrix elements given by (76),  (76),  and (77),  we get for the
stattering  coefficient

,

vz If we write  (81) in terms of x instead of X, we get

(27Te)*  V’ Kk2C4 v .

I

2nm  (1’10)  sa,ao - 2 v(a~a~~)v(~~~@q  ~(Y’Ix~~I~n~(~~lx~o~O1O~  -

d
V”-v(&Y.o)

_ Ca’ IXPO lO(~”  1x1,  bO>
11

2
v�+V(da�) l

($2)

We tan  simplify (82) with the help of the quantum  conditions.
. We have XI’ XI0 -XpX, = 0,
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which gives

25 ((~‘~x~‘~016)(01*(X,o~cyO)-(O1’~x~n~ff~)(~n(x~~~LyO))  = 0,
d

and also . .
XI’ XI0 -XI0 XI’ = l/m.  (x,rpio-p10  x,‘) = i?i/m . (l’l”),

which gives

2 ((01’~x~‘f~~).~(~n~0)(Cyn~x,o~a0)-”(01’0111)(”’jx~o~~b),  (d’IX,#Ic%“>>
a”

= ;i”i  g (1’10) 6&0  = &m (1’10)  &&
-Ir 7r

Multiplying (83) by u’  and adding to (84),  we  obtain

0 64

(83)

(84)

= 6/2nm.  (1’1O)  Sarvcwo.
If we Substitute this expression for fi/2nm.  (1’10) S,#,,  in (82),  we
obtain, after a straightforward reduction making use of identical
relations between the V’S,

(24”  0 ‘3-pgv Ia
(CY’jX~‘~OI’)(Cll’(X~0~OLO)

Ce* VO-+“aO) -
(O1’~X1O~O1’)(~n~X1’lao>  2 (85)

)Iv’+l’(d’a”)  *
This gives the stattering coefficient in the form of the effective
area that a Photon  has to hit per unit solid angle of stattering.  It is
known as the Kranzers-Heisenberg dispersion formula, having been first
obtained by these authors from analogies with the classical theory
of dispersion.

The fact that the various terms in (82) tan be combined to give
the result (85) justifies the assumption made in deriving formula (44)
of 3 51, that the matrix elements (p’d  1 V Ip’~ll”)  of the interaction
energy are of the second Order  of smallness compared with the
(p’cy’l  Vlk) ones, at any rate when the scattered particles  are photons.

65. An assembly of fermions
An assembly of fermions  tan  be treated by a method similar to

that used in $5  59 and 60 for bosons. With the kets (1) we may use
the antisymmetrixing Operator A defined by

A = u’!-4 2 rf-P, (2’)
summed over all permutations P, the + or - sign being taken
according to whether P is even or odd. Applied to the ket (1) it gives

u’!-‘, z &Pl,;f,$x$...c@  = AI&&xc...&, (3’)
a ket corresponding to a state for an assembly of u’ fermions. The

A
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ket (3’) is normalized provided the individual fermion  kets 1~8)  , 1 o?) , . . .
are all different, otherwise it is Zero.  In this respect  the ket (3’) is
simpler than the ket (3). However, (3’) is more complicated than (3)
in that (3’) depends on the Order  in which aa,  2, o~c,.  . . occur in it,
being subject to a Change of sign if an odd Permutation is applied
to this Order.

We tan,  as before, introduce the numbers n,, n2,  ns,...  of fermions
in the states @, @,  G,... and treat them as dynamical variables or
observables. They each have as eigenvalues only 0 and 1. They ferm
a complete set of commuting observables for the assembly of fermions.
The basic kets of a representation with the n’s  diagonal may be taken
to be connected with the kets (3’) by the equation

Al Oia~b~c...& = If: jn;n~n&..> (6’)
corresponding to (6),  the n”s being connected with the variables
aa, ab,  OP... by equation (4). The & sign is needed in (6’) since,  for
given n”s, the occupied states EU,  ab,  &,...  are fixed but not their
Order,  so that the sign of the left-hand side of (6) is not fixed. To
set up a rule which determines the sign in (S’),  we must arrange all
the states 01  for a fermion  arbitrarily in some Standard Order.  The
CX’S occurring in the left-hand side of (6’) form a certain selection from
all the CX’S and the Standard Order  for all the a’s  will give a Standard
Order  for this  selection.  We now make the rule that the + sign should
occur in (6’) if the a’s  on the left-hand side tan  be brought into their
Standard Order  by an even Permutation and the - sign if an odd
Permutation is required. Owing to the complexity of this rule,
the representation with the basic kets jn;nina...>  is not a very
useful one.

If the number of fermions  in the assembly is variable, we tan set
up the complete set of kets

I>, bah A Iaaab), A Iaaabac,, . . . . (9’)
corresponding to (9). A general ket is now expressible as a sum of
the various kets (9’).

To continue with the development we introduce a set of linear
Operators 7,  q, one pair ya, qa corresponding to each  fermion  state CP,
satisfying the commutation  relations
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These relations are like (11) with a + sign instead of a - on the left-
hand side. They show that, for u # b, qa and +ja  anticommute with
Tb and 7jb,  while, ptting b = CG,  they give

77a= 32 0 Ta= >-2  0 Tia rla+rla ria = l* (11”)

To verify that the relations (11’).are consistent,  we note that linear
Operators 7,  q satisfying the conditions (11’) tan be constructed in
the following way. For each  state CP we take a set of linear Operators

*xm uya9 *za like the ox, uy,  az introduced in 8 37 to describe the spin
of an electron and such that oZa, oya, a,, commute with O&,  g&, Ost,
for b # a. We also take an independent set of linear Operators [,,
one for each  state OI~, which all anticommute with one another and
have their  squares unity, and commute with all the c variables.
Then, putting

rla = 85a(“za-iOya), ria = 85a(“za+iof/a),

we have all the conditions (11’) satisfied.
From (11”)

(17a7j,J2  = -rla rla rla rla- = ??all-TaSa);ia  = rla+ja*

This is an algebraic  equation for r),+ja,  showing that rlaqa is an
observable with the eigenvalues 0 and 1. Also ya +ja  commutes  with
qb jjb for b # a. These results allow us to put

17a Va = na9 (12’)
the same as (12). From (11”) we get now

rlarla = 1 --na, (13’)
the equation corresponding to (13).

Let us write  the normalized ket which is an eigenket of all the n’s
belonging to the eigenvalues zero as )a.  Then

so from (12’)

Herme
like (15). Again

rY,>g  = 0,

CA Ila rJa>A  = O*
$&)A  = O,

(A !ia  qa>A = <A(l-na)>A  = <A>A  = l,

showing that ?ja}A is normalized, and

na ?a>A  = ?u ga qa)A  = qa(l  -na))A = Ta)A>

showing that  qa)A is an eigenket of na belonging to the eigenvalue
unity. It is an eigenket of the other n’s belonging to the eigenvalues
Zero,  since  the other n’s  commute with qa. By generalizing the
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argument we see that ya  Q,  ~~...r)~)~  is normalized and is a simul-
taneous eigenket of all the n’s,  belonging to the eigenvalues unity
for n,, nb,  nc,.  . . , nQ  and zero for the other n’s. This enables us to put

AIcx”abac.,  . &) = Ta rlb r7c***rly)A, (17’)

both sides being antisymmetrical  in the labels  a, b, c,..., g. We have
here the analogue of (17).

If we pass over to a different set of basic  kets j/3A)  for a fermion,
we tan introduce a new set of linear Operators rlA corresponding to
them. We then find, by the same argument as in the case  of bosons,
that the new 7’s  are connected with the original ones by (21). This
Shows  that there is a procedure of second quantization for fermions
similar to that for bosons, with the only differente that the commu-
tation  relations (11’) must be employed for fermions  to replace the
commutation relations (11) for bosons.

A symmetrical linear Operator UT of the form (22) tan  be expressed
in terms of the q, f variables by a similar method to that used for
bosons. Equation (24) still holds, and so does (25) with S replaced
by A. Instead of (26) we now have

uT 7x1 Txz*** >A = 12 (-)‘-%a  q&17)zl qsz***)A ca 1 uk%>

= ; 9, c Hr-1~$?51 %,.“>A  %,,<al  um> (26’)
ab T~ ’

q;l  meaning that the factor yzr must be cancelled out, without its
Position  among the other qz’s  being changed  before the cancellation.
Instead of (27) we have

(27’)
so (28) holds with )a for )x and thus (29) holds unchanged.  We have
the same final form (29) for Ur in the fermion  case  as in the boson
case. Similarly, a symmetrical linear Operator VT of the form (30) tan
be expressed as

VT = a&?u rl,(ablvlcd>iia  +L (35’)

the same as one of the ways of writing  (35).
The foregoing work Shows  that there is a deep-seated analogy

between the theory of fermions  and that of bosons, only slight
changes  having to be made in the general equations of the formalism
when one passes from one to the other.
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RELATIVISTIC THEORY OP THE ELECTRON

66. Relativistic treatment of a particle
THE theory we have been building up so far is essentially a non-
relativistic one. We have been working all the time with one par- ’
ticular  Lorentz frame of reference and have set up the theory as an
analogue of the classical non-relativistic dynamics.  Let us now try
to malte the theory invariant under  Lorentz transformations, so that
it conforms to the special principle of relativity.

In  the first place we note that the general principle of superposi-
tion of states, as given in Chapter 1, is a relativistic principle. It
applies to ‘states’ with the relativistic space-time  meaning. Beyond
this,  though, the theory does not lend itself very well to relativistic
treatment, owing to the fundamental notion of an ‘observable’ not
fitting in very well with the requirements of relativity. The measure-
ment of an observable, in the theory we have been dealing with up
to the present, has always consisted in the measurement of some
dynamical variable at some instant of time in some Lorentz frame
of reference and there does not seem to be any very natura1 way of
generalizing this notion  of an observable to make it cease  to refer to

j a particular  Lorentz frame. In consequerice  one cannot  set up a
scheme of relativistic quantum  mechanics with the same degree of
generality as the non-relativistic theory. All one tan do is to solve

I special Problems  in a Lorentz-invariant way. This should not be
regarded as a defect of the quantum  theory, since  it is in perfett
analogy with the classical theory. Relativistic classical mechanics
does not involve any such general scheme as the contact transforma-
tion theory of non-relativistic classical mechanics, but consists in the
Solution of comparatively special Problems.

One of the special Problems  that tan be handled relativistically is
that of the motion of a particle in an external field of forte. Our non-
relativistic quantum  mechanics applied to this Problem  tan be fitted
in with the formalism of relativity by a Change of notation. We put
xl,  x2,  x3  for x, y, x and x0  for ct, so that the time dependent wave
function  in Schrödinger’s representation appears as $(xO x1  x2  xJ,
in which  the four x’s may be treated on the same footing. We
write the momentum  components as pl, pZ, p3 instead of pr,  p,,  pa.



To preserve’  the symmetry between the four x’s  we introduce a
corresponding linear Operator po, equal  to the energy divided by c,
whose effect on # is

a*
Pd0 = &&g>* (2)

0

The differente  in sign in (1) and (2) is required by relativity.
We treat x0 and po as dynamical variables on the Same footing as

the other x’s  and p’s. They provide a new degree of freedom. The
Standard ket in (1) and (2) must refer to this new degree of freedom
as weil  as to the previous ones. The lack  of symmctry between the
treatment of x0 and that of the other z’s in the non-relativistic theory
may be considered as due to our always using a representation with
x0 diagonal and leaving understood the Standard ket for the (x,pO)
degree of freedom. It would seem that only representations with  x0
diagonal are useful in the non-relativistic theory. We may therefore
expect that in a relativistic theory, which  treats all the four x’s on
the Same footing, only representations with the four x’s  diagonal will
be useful. It then becomes  convenient to leave understood the stan-
dard ket for all four degrees of freedom and to write any ket as a
wave function in the four x’s.

In the theory of the electron  that. will be developed  here we  shall  /
have to introduce some further  degrees of freedom describing an i
internal motion of the electron.  A ket for the whole System  will now
be written as a ket in these further  degrees of freedom and a wave
function in the four x’s, and will appear as tx,x, x2x3),  or [x) for
brevity, according to the notation explained near the end of 0 20.

67. The wave eqwation for the electron
Let us consider first the case  of the motion  of an electron  in the

absence  of an electromagnetic  field, so that the Problem  is simply
that of the free particle,  as dealt with in $ 30, with the possible
addition of internal degrees of freedom. The relativistic IIamiltonian
provided by classical mechanics for this System  is given by equation
(23) of 8 30, and leads to the wave equation

~~0-(m2c2+~~+li~+li~)“)IX> = 0, (3)
where the 13’s  are to be interpreted as Operators in accordance with
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equations (1) and (2). Equation (3),  although it takes into account
the relation between energy and momentum  required by relativity,
is yet unsatisfactory from the Point  of view of relativistic theory,
because  it is very unsymmetrical between p,, and the other p’s, so
much  so that one cannot  generalize it in a relativistic way to the
case  when there is a field present. We must therefore look for a new
wave equation.

If we multiply the wave equation (3) on the left by the Operator
(po+  (m2c2+p,2+p2+p3)f), we obtain the equation

{p”o--TL&2-Pp-p;-P3)l~)  = 0, (4)

which is of a relativistically  invariant form and may therefore more
conveniently be taken as the basis of a relativistic theory. Equation
(4) is not completely equivalent to equation (3) since,  although every
Solution of (3) is also a solution of (4),  the converse  is not true. Only
those solutions of (4) belonging to positive values for po are also
solutions of (3).

The wave equation (4) is not of the form required by the general
laws of the quantum  theory on account of its being quadratic  in p,.
In 6 27 we deduced from quite general arguments that the wave
equation must  be linear in the Operator a/at or po, like equation (7)
of that section.  We therefore seek a wave equation that is linear
in po and that is roughly equivalent to (4). In Order  that this wave
equation shall transform in a simple way under  a Lorentz transforma-
tion, we try to arrange that it shall be rational and linear in pl,  p,,
and p3 as well as in po, and thus of the form

where the 2s and j3  are independent of thep’s. Since  we are consider-
ing the case  of no field, all Points  in space-time must be equivalent,
so that the Operator in the wave equation must not involve the x’s.
Thus the a’s  and /3 must also be independent of the x’s,  so that they

must commute  with the p’s and the x’s.  They therefore describe
some new degrees of freedom, belonging to some internal motion in
the electron.  We shall see later that they bring in the Spin  of the
electron.  It is these degrees of freedom to which the ket IX) refers.

Multiplying (5) by the Operator ~~o-~Ip1-~2232-c~~~-~~  on the
left, we obtain
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where 1 refers to cyclic permutations of the suffixes 1, 2, 3. This is
123

the same as (4) if the CII’S and j3  satisfy the relations

together with the relations obtained from these by permuting the
suffixes 1, 2, 3. If we write

P= a,mc,
these  relations may be summed up in the Single  one,

ap CX~+CII, + = 26,, (p,  v = 1,2,3,  or m). (6)

The four a’s all anticommute  with one another and the Square of
each  is unity.

Thus by giving suitable properties to the a’s  and /3  we tan make
the wave equation (5) equivalent to (4), in so far as the motion of
the electron as a whole is concerned. We may now assume (5) is the
correct relativistic  wave equation for the motion of an electron in
the absence  of a field. This gives rise to one difficulty, however,
owing to the fact that (5), like  (4), is not exactly equivalent to (3),  ’
but allows solutions corresponding to negative as well as positive
values of PO. The former  do not, of course, correspond to any actually
observable motion of an electron. For the present we shall consider
only the positive-energy solutions and shall leave the discussion  of
the negative-energy ones to $ 73.

We tan easily obtain a representation of the four a’s.  They have
similar algebraic  properties to the a’s  introduced in 9 37, which  0’s
tan be represented by matrices  with two rows and columns. So long
as we keep to matrices  with two rows and columns we cannot get a
representation of more than three anticommuting quantities, and we
have to go to four rows and columns to get a representation  of the
four anticommuting, a’s. It is convenient first  to express the CX’S in
terms of the 0’s and also of a second similar set of three anticom-
muting variables whose squares are unity, pl, p2,  p3  say, that are
independent of and commute  with the U’S.  We may take, amongst
other possibilities,

a1 = Pl (Jl> 012 = Pl a2> 013 = Pl % am= PS? (7)

and the a’s will then satisfy all the relations (6), as may easily be
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verified. If we now take a representation with p3 and o3 diagonal,
we shall get the following scheme of matrices:

Corresponding to the four rows and columns there are four indepen-
dent kets,  so that the wave function will have four components.
We saw in 5 37 that the spin of the electron requires the wave
function to have two components. The fact that our  present theory
gives four is due to our wave equation (5) having twice as many
solutions as it ought to have, half of them corresponding to states
of negative energy.

With the help of (7),  the wave equation (5) may be written with
three-dimensional vector notation

hfPl(Q,  P)+p3mc}Ie  = 0. (8) l

To generalize this equation to the case  when there is an electro-
magnetic  field  present, we follow the classical rule of replacing po and
p by p,+e/c.A,  and p+e/c.  A, A,  and A being the scalar  and vector
Potentials of the field at the place where the electron is. This gives
us the equation

i
Z>o+;f&+F+,  P+~A)+p,+lz)  = 0,

which  is the fundamental wave equation of the relativistic  theory of
the electron. The conjugate imaginary equation is

(10)

in which  the operators p operate to the left. An Operator of differen-
tiation operating to the Ieft must be interpreted according to (24) of
fj 22.

i, c / /-.
‘, .7 ’ , ,/ I 1
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68. Invariante  under  a Lorentz transformation
Before proceeding to discuss  the physical consequences of the wave

equation (9) or (lO),  we shall first  verify that our theory really  is
invariant  under  a Lorentz transformation, or, stated more accurately,
that the physical results the theory leads to are independent of the
Lorentz frame of reference used. This is not by any means obvious
from the form of the wave equation (9). We have to verify that, if
we write down the wave equation in a different Lorentz frame, the
solutions of the new wave equation may be put into one-one corre-
spondence with those of the original one in such a way that corre-
sponding solutions may be assumed to represent the same state. E’or
either Lorentz frame, the Square of the length of the ket IX} should
give the probability per unit volume of the electron being at the place
x in that Lorentz frame. We may cal1 this the probability  density. Its
values,  calculated in different Lorentz frames for wave functions
representing the same state, should be connected like  the time com-
ponents in these frames of some 4vector.  Further,  the 4-dimensional
divergente of this 4-vector  should vanish, signifying conservation of
the electron, or that the electron cannot  appear or disappear in any
volume without passing  through the boundary.

For discussing Lorentz transformations it is convenient to make
the convention  that terms containing a repeated suffix are to be
summed over the values 0, 1, 2, 3 for that su%x.  This enables us to
write equation (9) in the form

(~Jpp+e/c.  AP>  + am WC}  IX> = 0, (11)
ao being equal to unity, and similarly we tan write equation (10) in
the form (Xl(g(~p+elc.A,)+ar,mc}  = 0. (12)

We now apply a Lorentz transformation and denote quantities
referring to the new frame by a Star. The components of the 4vectors
p and A will transform according to a linear law of the type

Pp = ~pld, A, = a,,  AY. (13)
Substituting these ekpressions  for pl, and A,  in equations (11) and
(12),  we obtain

(~~u~~(~~+e/c.AY)+OLm~c}Ix)  = 0
1

(14)
and (xl~~~ar,(~Y+eic.AY>+iYlnmc)  = 0.
We now try to bring these equations back to the form of the original
(11) and (12) by making a transformation

IX”> = rix> (16)
3595.57 s
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where y is a linear Operator in the internal degrees of freedom and is
independent of the x’s and $8. The conjugate imaginary equation
to (16) is (LIT*  1 = (xlp. (16)
Equations (14) will go over into the equations

~(~,(~1+e/coAY*)+cY,mC)12*) = 0
and <z*I{~,(~~+elc.AY)+ar,mc)y  = 0

(17)

provided we tan choose y such that

%r = apapy, ya, y = a,. (18)
These equations ( 17) are of the same form as ( 11) and (12), as re-
quired, since one tan divide out by the extra factors y and y. The
transformation given by ( 16)?  (16), and ( 18) is something like a
unitary transformation, but is more general since y does not satisfy
the unitary condition.

In Order  to verify that we tan choose y to satisfy the equations
(18),  let us Grst take the special case  when the Change of our frame
of reference consists simply of a rotation through a hyperbolic angle
8 in the z-c,,x,-plane, so that the transformation equations for the
components of a si-vector are of the type

Po = ~0 cash 8+~-$ sinh 8,

Pl = p; sinh 0+~$ cash 8, (19)
P2 = 2% 243 = Jg. 1

The values of the a,,  may be written down at once from a comparison
of these equations with (13). With these values for the ap,,, it is easy
to see that equations (18) hold when we take

Y = ,f.$h = f. (20)
We have, in faot,

f&y  = $iy = eh

= i+ecr1+e2~~/2!+e3~~~3!+....  .
On account of CX!  = 1, this reduces to

pao y = p+e2/2!+...)+arl{e+e3/3i+...j
= cash S+ a1 sinh 0

Again,
Further,

= aocoshe+c%g3inhe.

fa, y = ar,vy = ao sinh fl+ 0~~ cash 8.

e2Y  = e@%  a2  et&  = &b  e-a-eal  a 2 = %
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since a2 anticommutes with (Y~,  which results in ar2f(al) = f(-~&~
for any function f(aJ of cyl. Similarly,

Thus the five equations (18) hold with y given by (20) when the a,,
are given by (19).

As a second typical Change of the frame of reference, we may con-
sider a rotation through an angle 8 in ordinary space about the x,-axis.
The transformation equations are now

Po =P& P1=PL
P2 = pt COS  t9+pz  sin 8,

P 3  = -pg sin 8 +pz cos 8.

With the new values for the aP,  we tan easily verify that equations
( 18) hold with

y = (+wa, jj = ~-a~w% = &%~a,

the analysis being very similar to the preceding case.
If two changes of the frame of reference are made consecutively,

we simply have to multiply the corresponding y’s to get the y for
the resultant Change. Now any Change of the frame of reference may
be built up from two rotations of the types we have considered, and
hence there will always be a y satisfying (18).

In this way we see that the solutions of the wave equations in the
new frame of reference, equations (17),  tan be put into a natura1 one-
one correspondence with those of the original wave equations (21)
and (12),  corresponding solutions being connected by (15) and (16),
and we may assume that corresponding solutions represent the same
state. It remains for us to verify that the probability density trans-
forms like the time component of a 4-vector  and that the divergente
of this 4-vector  vanishes.

The probability density is <x IX) = (x Iaolx)  since CY~  = 1. Let us
see how the four quantities (x IaP IX}, with p = 0, 1, 2, 3, transform
under a Lorentz transformation. We have, from (15), (16),  and (18),

<~*b,I~*)  = <4Ywlx> = (xI~papyI~)  = W~pl~>ap,.
Comparing this result with (13),  we see that the four quantities
<xl+lx)  transform like the covariant components of a 4-vector  (as
defined in 8 74). The contravariant components will be

<xlx>, --CXI~&~> --<~l%l~~, --+b&>= (21)
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This verifies that the probability density (X IX) is the time component
of a 4-vector and that the corresponding space components are
-(z/a,Ix)  (with r = 1, 2, 3). These space components multiplied by
the factor  c give the probability current,  or the probability of the
electron crossing unit area per unit time.

The divergente of the 4vector  is

(22)

where the Jc sign means that the + sign is to be taken for p = 0
and the - sign for p = 1, 2, 3 before one does the summation. TO

prove this divergente vanishes, multiply equation (11) by (x] on the
left and (12) by 1x on the right and subtract. The result is)

the dots denoting that pP operates to the right on IX) in the first
ferm and to the left on (XI in the second.  With the help of (1) and
(2) and the interpretation (24) of 3 22 for Operators of differentiation
operating to the left, this gives

which just expresses the vanishing of (22). In this way we complete
the proof that our theory gives consistent  results in whichever frame
of reference it is applied.

69. The motion of a,free electron
It is of interest to consider the motion of a free electron in the

above theory according to the Heisenberg picture and to study the
Heisenberg equations of motion. These equations of motion tan be
integrated exactly, as was first  done by Schrödinger,? For brevity
we shall omit the suffix t which the notation of 0 28 requires to be
inserted in dynamical variables that vary with time in the Heisen-
berg picture.

As Hamiltonian we must take the expression which we get as equal
to cpO when we put the Operator on IX} in (8) equal to Zero,  i.e.

H = -cp,(cr,  p)-p3v2c2  = -c(a,  p)-p3mc2. (23)
t Schrödinger,  Sitzungsb.  d. Berlin Akad., 1930, p. 418.
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We see at once that the momentum  commutes  with H and is thus a
constant of the motion. Further,  the x,-component  of the velocity is

2, = [xl,  H] = -cal. (24)
This result is rather surprising, as it means an altogether different
relation between velocity and momentum  from what one has in
classical  mechanics. It is connected, however, with the expressions
(21) for the probability  density and current.  The X,  given by (24)
has as eigenvalues zfrc,  corresponding to the eigenvalues hl of cul.
As X, and X,  are similar,  we tan conclude  that a measurement of a com-
ponent of the velocity of a free electron is certain to tead to’the  result &c.
This conclusion is easily seen to hold also when there is a field present.

Since  electrons  are observed in practice to have velocities con-
siderably less than that of light, it would seem that we have here  a
contradiction with experiment. The contradiction is not real, though,
since  the theoretical velocity in the above conclusion is the velocity
at one instant of time while observed velocities are always average
velocities through appreciable time intervals. We shall find upon
further  examination of the equations of motion that the velocity is
not at all constant, but oscillates rapidly about a mean value which
agrees with the observed value.

It may easily be verified that a measurement of a component of the
velocity must lead to the result &-c  in a relativistic  theory, simply
from an elementary application  of the principle of uncertainty of
3 24. To measure the velocity we  must measure the Position  at two
slightly different times and then divide the Change of Position  by the
time interval. (It will not do to measure the momentum  and apply
a formula, as the ordinary connexion between velocity and momen-
turn is not valid.) In Order  that our measured velocity may approxi-
mate to the instantaneous velocity, the time interval between the
two measurements of Position  must be very short and hence  these
measurements must be very accurate. The great accuracy with
which  the Position of the electron is known during  the time-interval
must give rise, according to the principle of uncertainty, to an almost
complete indeterminacy in its momentum. This means that almost
all values of the momentum  are equally probable, so that the momen-
turn is almost  certain to be infinite. An infinite value for a component
of momentum  corresponds to the value &c for the corresponding
component of velocity.
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Let US now examine how  the velocify  of the electron varies wifh
time. We have in&, = C+--HCX~.
New since 01~  anticommutes with all fhe terms in H except  -Ca#l,

and hence
it&, = 2% H+ 2CPl

= - 2Hcu,--- 2~3. 1 (26)
Since  H and p1 are constauts, it follows from the fist of equations
(26) that ihia, = 2cy1  H. (26)
Chis differential equation in hr tan be integrated immediately, the
result being

dt1 = &fe -2tHt/Ti
> (27)

where &10  is a constant, equal to the value of h1 when t = 0. The
factor e-2iHtlfi must be put to the right of the factor  &i in (27) on
account of the H occurring to the right of the h1 in (26). The second
of equations (25) leads in the same way to the result

“1 = e2iHt/fiaO1 '

we tan now easily complete the integration of the equation of motion
for zI.  E’rom  (27) and the first of equations (25)

al=#&ife-2iHt/fiH-l-cpl  H-l,
(28)

and hence the time-integral of equation (24) is

x1 = ~TG@e--2~HflfiH-2+c2pl  H-lt+a,, (29)
a, being a constant.

From (28) we see that the xl component of velocity, -cal, consists
of two Parts,  a constant part c2pl  H-l, connected with the momentum
by the classical relativistic formula, and an oscillatory part

_ #&z  e-2iHtlfiH-l
,

whose fkequency is high, being 2H/h, which is at least 2mc2/h.  Only
the constant part would be observed in a practical measurement of
velocity, such a measurement giving the average velocity through a
time-interval much larger fhan h/2mc2. The oscillatory part secures
that the instantaneous value  of Xl shall have  the eigenvalues -&c. The
oscillatory part of xl is small, being, according to (29),

&9i2# e -2iHt/fiH-2  = -g;X(q+cp, H-l)H-1,
which is of the Order  of magnitude fi/mc, since (CX~+CJ+  H-l) is of the
Order  of magnitude uaity.
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70. Existente  of the spin
In $67 we saw that the correct wave equation for the electron in

the absence  of an electromagnetic  field, namely equation (5) or (S), is
equivalent to the wave equation (4)  which is suggested from analogy
with the classical theory. This equivalence no longer holds when
there is a field. The wave equation to be expected from analogy with
the classical theory in this case  is

((~o+~~~~-(~+gA)2-~2c2)/5)  = 0,

in which the Operator is just the classical relativistic Hamiltonian.
If we must multiply (9) by some factor on the left to make it resemble
(30) as closely as possible, namely the factor

we get

We now use the general formula that, if B and C are any two
three-dimensional vectors that commute  with G,

(~2 Bk C) = 1 (UV?,  Cl+01  02 & Cz+a,  oJ1 J3,  Cl>,123

e

the summation referring to cyclic permutations of the suffixes 1, 2,3,
or

Ca, BW,  C) = (6 C)+i  1 d& ($--43 Cl)
123

= (B, C)+i(a, B x C). (32)

Taking B = C = p+e/c. A, we find, since

f (p+zA) x (P+~A)  = z(pxA+Axp}

= -i!ie/c . curl  A = -i%e/c  . #,

where J# is the magnetic  field,  that

(o, P+~A)~  = (p+;A)a+~bW-
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Also we have

= %,PoA-APo+4P-P~o)c

‘$+gradAo)  = -i-(CS,&),
C

where e is the electric field. Thus (31) becomes

(34)
This equation differs from (30) through having two extra terms in
the Operator. These extra terms involve some new physical effects,
but since  they are not real they do not lend themselves very directly
to physical interpretation.

To get an understanding of the physical features involved in the
differente  between (34) and (31) it is better to work with the Heisen-
berg picture, this picture being always the more suitable one for
comparisons between classical and quantum  mechanics. The Heisen-
berg equations of motion are determined by the Hamiltonian

H  =  -eA,-ct+,  P+~Aj-fv@, G-w

the generalization  of (23) to the case  when there is a field. Equation
(35) gives

f+EAo)B  = (p+ P+EA)+P.~C)

= (cr,  p+zA)Z+m2c2-

(36)  .

with the help of (33). We have here the real part of the extra terms
in (34) appearing without the pure imaginary part. For ,an electron
moving slowly (i.e. with small momentum), we may expect the
Heisenberg equations of motion to be determined by a Hamiltonian
of the form mc2+Hl, where H, is small compared with mc2. Putting
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mc2+H,  for H in (36) and neglecting H: and other terms involving
c-2, we get, on dividing by 2m

H,+eA,  = & 2+ (37)

The Hamiltonian H, given by (37) is the same as the classical
Hamiltonian for a slow electron, except for the last ferm

This term may be considered as an additional potential energy
which  a slow electron has in the quantum  theory and may be
interpreted as arising from the electron huving  a mugnetic moment
-Itie/2mc.  Q. This magnetic  moment is the one assumed in $$4l and
47 for dealing with the Zeeman effect and is in agreement wifh
experiment .

The spin angular momentum  does not give rise to any potential
energy and therefore does not appear in the result of the preceding
calculation. The simplest way of showing the existente of the spin
angular momentum  is to take the case  of the motion of a free electron
or an electron in a central  field of forte and determine the angular
momentum  integrals. This means working with the Hamiltonian (23),
or with the Hamiltonian (35) with A = 0 and Ao a function of the
radius r, i.e. H = -eAO(+-~pl(~,  p)--p3mc2, (38)

and obtaining the Heisenberg equations of motion for the angular
momentum. With either Hamiltonian we find for the rate of ch&nge
of the x,-component  of orbital angular momentum, m, = x~(P~---~~~~,
with the help of commutation relations proved in 6 35,

ah, = m, H - H m ,

= - Vl(ml(f4  P) - (Q,  P)%I

= - cpda, ml P  - PmJ

= - if@472pa  -w2).

Thus @1  # 0 and the orbital angular momentum  is not a constant
of the motion. This result is to be expected from the integrated
equation of motion (29),  the oscillatory part of the motion here dis-
played giving rise to an oscillatory term in the angular momentum.
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We have further
ifia, = Ul H-Ho,

= -%{%h  P) - (o, P)%)
= -CPlb,  Q--5.> Pl
= --2~cP,(a,P2-~2P3

with the help of equations (51) of fj 37. Hence
iqm,+ pi&J = 0,

so that the vector m+& is a oonstant of the motion. This result
one tan interpret by saying the electron has a Spin angular momentum
@G, which must be added to the orbital angular momentum m before
one gets a constant of the motion. The Spin  angular momentum
could alternatively be obtained from the rotation Operators for states
of spin in accordance with the general method of $35.

The same vector G fixes the directions of both the spin magnetic
moment and the spin angular momentum. If an electron in a certain
state of spin has a spin angular momentum of 45 in a particular
direction, it will have a magnetic moment -e5/2mc  in the same
direction.

71. Transition to polar variables
For the further study of the motion of an electron in a central field

of forte  with the Hamiltonian (38),  it is oonvenient to make a
transformation to polar coordinates, as was done in 6 38 in the
non-relativistic case. We tan introduce r and pr as before, but
instead of k, the magnitude of the orbital angular momentum m,
which is no longer a constant of the motion, we must now use the
magnitude of the total angular momentum M = m+@k. Let us put

pp = Mf+JL?;+xg+)n2. (39)
The eigenvalues of m3 arc  integral multiples of fi, those of &J are
&-$fi, and hence those of M, must be half-odd integral multiples of
iri. It follows frorn  the theory of 6 36 that the eigenvalues of /jl must
be integers greater than Zero.

If in formula (32) we take B = C  = m, we  get

Hence

(Q,  W2 = m2+i(a, m x m)
= m24(cr, m)
= (m+*&o)2-2%(cr,  m)-$fi2.

((a,  m)+5j2 - M2+$fi2.
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Thus (u, m)+&  is a quantity whose Square is M2+iA2  and we  could,
consistently with equation (39),  define j& as (Q,  m)+&  This would
not be the most convenient definition for j, however, since we would
like to have j a constant of the motion and (0, m)+& is not constant,
We have, in fact, from applications of (32),

(CS, m)(q p) = ib,  m X P)
and
so that

h P) ta> m) = i(a,  p x m),

= i
?i

0,.2iz@,  = -2fi(a,  p),

01: ((Q, m)+W, p)+;su. P){(@,  @3-n}  = 0,
Thus (G,  m) +fi anticommutes with one of the terrns  in the expression
(38) for H, namely the term -cpI(a,  p), and commutes with the other
two. It follows that &(Q, m)+fi> commutes with all the three terms
in H and is a constant of the motion. But the Square of p3((o,  m)+&}
is also M2+@2. We tan therefore take

jn = p&c m)+@, (40)
which gives us a convenient rational definition  for j which is consis-
tent with (39) and makes j a constant of the motion. The eigenvalues
of this j are all positive and negative integers, excluding Zero.

By a further application  of (32),  we get

(Q, X)(% P) = (x, P) +i(u,  m)
= rfpr+ip,jili-iii, (41)

with the help of (40) and also of equation (58) of 9 38. We introduce
the linear Operator E defined by

re = Plh x)- (42)

Since r commutes with pl and with (CS,  x), it must commute with C.
We thus have

r2e2  = [p+r, x)]”  = (u, x)2 = X2 = r2,
or 2 = 1,
Now pl(tx, p) commutes with j, and since there is symmetry between
x and p so far as angular momentum is concerned, pl(a, x) must also
commute withj. Hence e commutes with j. Further, E must commute
with pp, since we have

(a, x)(x, P)-(x, P)@, x) = (o, x(x,  PF-(x,  P)X) = ifi(o, x),
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dich gives -rP?- -rp, r~ = itik
or r2Ep,--r2p76  = 0.

I+om  (41) and (42) we obtain

rEpl(cr, p) = rp,+ip&-ifi
or P&J, p) = ~(p,--W9+b?V.
Thus  (38) becomes

H/c = -e/c.A,-E(pi,---ifi Jr)  - kp,j&jr  - p3  mc.
This  gives our  Hamiltonian  expressed in terms of polar variables. It
should be noticed that  6 and p3 commute  with all the other variables
occurring in H and anticommute  with  one another. This means that
we tan take a representation with p3 diagonal in which E and p3  arc
represented respectively by the matrices

(43)

If r is also diagonal in the representation, the representative
<r’pk I> of a ket will have two components, (r’, 11) = #Jr’)  and
(6 -lI> = &Jr’)  say, re erring  to the two rows and columns of thef
matrices (43).

72. The fine-structure of the energy-levels of hydrogen
We shall  now take the case  of the hydrogen atom, for which A,  = e/r,
and work out its energy-levels, given by the eigenvalues H’ of H.
The equation (H’-H)  IH’) = 0 which defines these eigenvalues, when
written in terms of representatives in the representation discussed
above with E and p3  represented by the matrices (43),  gives the
equations

If we put
Ti n

mc+H’/c  = Ul, mc-H’Jc  = u29 (44)

these equations reduce to

(;+-(-g+~)h  = 0,
(-,,g),,+(&qb  = 0, 1

(45)
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where 01  = e2/fic, which is a small number. We shalI.  solve these equa-
tions by a similar method to that used for equation (73) in $39.

alt *a  = r-Ie--rlaf, tf+) = r-le-rlag, (46)

introducing two new functions,  f and g, of r, where

a = (a,a,)+ = &(m2c2-H’2/~2)-~. (47)

Equations (45) become

(;+$f-(g-;+$7  = 0,
(-;+~)g+(~+)f=  0. 1

W)
We now try for a Solution in which f and g are in the form of power

f = &rs, g  =  zc;rs,
S S

(49)

in which consecutive values of s differ by unity though these values
need not be integers. Substituting these expressions for f and g in
(48) and picking out coefficients of F-l, we obtain

cs-l/al+~cs-  (s+jbS+cLb  = 0,
-c~-l/a2+~c~+(s-j)cs-cs~l/a  = 0. ) (50)

By multiplying the first of these equations by a and the second
by a2  and adding,  we eliminate both cssI  and CL-~,  since  from
(47) a/al = a,fa. We are left with

[a~+a,(-j)]cs+[a2  -a(s+j)]cL  = 0, w
a relation which Shows  the connexion between the primed and un-
primed c’s .

The boundary condition at r = 0 requires that rt,ho  and r& -+ 0 as
r -+ 0, so from (46) f and g -+ 0 as r -+ 0. Thus the series (49) must
terminate on the side of small s. If so is the minimum  value of s for
which cs and ci do not both vanish, we obtain from (50),  by putting
s = s,,  and csavl  = c&-~  = 0,

~cs,-(s,+j)c~o = 0,
~ce,+@--j)cso  = 0, 1 (52)

which give

Since  the boundary condition requires that the minimum  value of a
shall  be greater than Zero,  we must take

$0  = +2/(j2-a2).
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To investigate  the convergence of the series (49) we shdl determine
the ratio c~/c~-~ for large s. Equation (51) and the second of equafions
(50)  give approximately, when  8 is large,

a2 5 = aci

and sc, = c,-,Ia  +cß-lla2.
Hence c,/c,-~ = 2/as.
The series (49) will therefore converge like

2 -- 1 0 2r8
s! a8

or e2r’? This result is similttr  to that obtained in $39 and allows us
to infer, as in 8 39, that all values of H’ are permissible for which a
is pure imaginary, i.e. from (47),  for which H’ > rnc2,  while for
H’ < mc2 we take a to be positive and then find that only those
values of H’ are permissible for which the series (49) terminate on
the side of large s.

If the series (49) terminate with the terms c, and CL,  so that
,

%+l = ‘8+1 = 0, we obtain from (50) with s+ 1 substituted for s

These two equations are equivalent on account of (47).  When com -
bined with (Gl),  they give

al[a~+a2(8-j)]  = a[a,  a--++j)],
which reduces to

or

2a,  a2  8 = a(a,-a&

with the help of (44). Squaring and using (47),  we obtain
s2(m2~2-H’2/~2)  = tx2HQJc2.

Hence
H’ $4 -*
Ei? -

- �4-a l

(  1
The s here, which specifies the last term in the series, must be greater
than sO by some integer not less than Zero. Calling this integer 72,
we have

and thus (54)
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This formula gives the discrete energy-levels of the hydrogen
spectrum and was first obtained by Sommerfeld working with Bohr’5
Orbit  theory. There are two quantum numbers n and j involved, but
owing to G being very small the energy depends almost entirely on
n+ 1 j 1.  Values of n and Jj 1 that give the Same n+ jj 1 give rise to a
set of energy-Ievels lying very close to one another, and to the
energy-level given by the non-relativistic formula (80) of 5 39 with
8 = n+ Ij 1,  apart from the constant term 972~2.

We used equations (53) by combining them with (51),  but this does
not make full use of (63) since the coefficients of cs and c8 in (51) may
both vanish. In this case  we get, multiplying the first coefficient by
a and the second by a2 and adding

(a2+u$a-2aa2j  = 0.

With the help of (47) and (44) this gives

(ar+az)a  = 24

or

or H’2  1 a2
-= --
m2c4 ' 2 '3

Since H’ must be positive, this leads to

which is the value of H’ given by (54) when 12 = 0. The case n = 0
thus needs further investigation to see whether the conditions (53)
are then fulfilled.

With n = 0, the maximum value of s is the Same as the minimum,
so equations (53) with so substituted for s should agree with (52).
New (55) gives, from (44) ad (47),

1
y 1+

(
40‘2-4

1

1 ma-=-
% ljl ' ii=Xm'

so the flrst of equations (63) with 6,,  substituted for 8 gives

c,,(ljl+~(j2-012)}+c~~01  = 0.
This agrees with the second of equations (62) provided j is negative.
We tan conclude that, for n = 0, j must be a negative integer, while
for the other values of n all non-Zero  integral values ofj are allowed.
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73. Theory of the positron
It has been mentioned in 3 67 that the wave equation for the elec-

tron admits of twice as many solutions as it ought to, half of them
referring to states with negative values for the kinetic energy c~,J--e&,.
This difficulty was introduced as soon as we passed from equation (3)
to equation (4) and is inherent in any relativistic theory. It occurs
also in classical relativistic thecry, but is not then serious since,  owing
to the continuity in the Variation of all classical dynamical variables,
if the kinetic energy cp,,+eA,  is initially  positive (when it must be
greater than or equal to m$),  it cannot subsequently be negative
(when it would have to be less than  or equal to -mc2).  In the
quantum  theory, however, discontinuous transitions may take place,
so that if’ the electron is initially in a state of positive kinetic energy
it may make a transition to a state of negative kinetic energy. It is
therefore no longer permissible simply to ignore the negative-energy
states, as one tan  do in the classical theory.

Let us examine the negative-energy solutions of the equation

a liftle more closely. For this purpose it is convenient to use a repre-
sentation of the 8’s in which all the elements of the matrices  repre-
senting cyl, cy2,  and (YQ  are real and all those of the matrix representing
cy,  are pure imaginary. Such a representation may be obtained, for
instance, from that of $ 67 by interchanging the expressions for cy2
and 01,  in (7). If equation (56) is expressed as a matrix equation in
this representation and we put -4 for i in all the matrix elements,
we get, remembering (1) and (Z), the matrix form of the equation

+olt(-bn+~A2)+q(-%fEA8)-oimcJir*) = OP (57)

. ,
1

where IX*>  is the ket whose representative is the conjugate complex
of the representative of IX}. Thus each  solution IX) of (56) deter-
mines uniquely a Solution IX*>  of (57) with the conjugate complex
representative. Further,  if the Solution IX)  of (56) belongs to a
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negative value  for  cpo+eA,,  the corresponding Solution IX*>  of (57)
will belong to a positive value for cp,-eA,.  But equation  (57) is  just
what one would get if one substituted -e for e in (56). It follows
that each  negative-energy Solution of (56) correspon& to a positive-
energy Solution of the wave equation obtained from (56) by substitu-
tion of -e for e,  which  Solution represents an electron of Charge +e
(instead of -e, as we had up to the present) moving through the
given elecfromagnetic field. Thus the unwanted solutions of (56) are
connected with the motion of an electron with a Charge +e. (It is
not possible, of course, with an arbitrary electromagnetic  field,  to
separate the solutions of (56) definitely into those referring to positive
and those referring to negative values for cpO+eAo,  as such a
Separation would imply that transitions from one kind to the other
do not occur. The preceding discussion  is therefore only a rough
one, applying to the case  when such a Separation is approximately
possible.)

In this way we are led to infer that the negative-energy solutions
of (56) refer to the motion of a new kind of particle  having the mass
of an electron and the opposite Charge.  Such particles  have been
observed experimentally and are called po&trons.  We cannot,  how-
ever, simply assert that the negative-energy solutions represent posi-
trons, as this would make the dynamical relations all wrong. For
instance, it is certainly not true that a positron has a negative kinetic
energy. We must therefore establish the theory of the positrons on
a somewhat different footing. We assume that nearly all the negative-
energy states are occupied,  with  one electron in each  state in accordance
with the exclusion principle of Pauli. An unoccupied negative-energy
state will now appear as something with a positive energy, since  to
make it disappear, i.e. to fill it up, we should have to add to it an
electron with negative energy. We assume that these unoccupied
negative-energy states are the positrons.

These assumptions require there to be a distribution of electrons
of infinite density everywhere in the world. A perfett vacuum is a
region where all the states of positive energy are unoccupied and all
those of negative energy are occupied. In a perfett  vacuum  Maxwell’s
equation

dive = 0

must, of course, be valid. This means that the infinite distribution
of negative-energy electrons  does not contribute to the electric field.

3596.67 T
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Only departures from the distribution in a vacuum  will contribute
to the electric density p in Maxwell’8  equation

div e = 43Tp.

Thus there will be a contribution -e for each  occupied state of posi-
tive energy and a contribution +e for each  unoccupied state of
negative energy.

The exclusion principle will operate to prevent a positive-energy
electron ordinarily from making  transitions to states of negative
energy. It will still be possible, however, for such an electron to
drop into an unoccupied state of negative energy. In this case  we
should have an electron and positron disappearing simultaneously,
their energy being emitted in the form of radiation. The converse
process would consist in the creation of an electron and a positron
from electromagnetic  radiation.

‘The  theory of the positron here given appears at first sight to treat
the electrons and positrons on very different footings, but actually
the fundamental ideas of the theory are symmetrical between the
electrons and positrons. We should have an equivalent theory if we
supposed the positrons to be the basic  particles,  described by wave
equations of the form (9) with -e for e, and then supposed that nearly
all the states of negative energy for the positron are filled up, a hole
in the distribution of negative-energy positrons being then inter-
preted as an ordinary electron. The theory could be developed
consistently with the hypothesis that all the laws of physics  are
symmetrical between positive and negative electric Charge.



XI1

QUANTUM ELECTRODYNAMICS

74. Relativistic  notation
IN 3 63 a theory was given of the interacfion of an afom with  a field
of radiation. This theory was an approximate one, valid for radiation
of long wave-length and for a certain simplified model of the atom.
Our present Problem  is to improve this theory, and in particular  to
make it relativistic, so that it may be applied to particles  moving at
high Speed. We must first set up a notation suitable for handling the
relativistic equations with which we shall have to deal.

We choose units of space  and time which make the velocity  of light
unity, so that c will no longer appear in our equations. A Point  in
space-time is located by its three Cartesian coordinates xl, x2,  xs and
its time t = xO, which together form a 4-vector  xP  (,u = 0, 1, 2, 3), or
x as we may write  it in vector  notation. Two 4vectors  a and b have
a Loren&invariant  scalar  product (ab) given by

(ab) = a, b,-a, b,--a, bz--a,  6, = a, b,--(ab), (1)
(ab) being the three-dimensional scalar  product  of the three-dimen-
sional Parts  of a and b. To take into account the - signs in (l),  it
is convenient to introduce vector  components with rclised  suffixes,
defined by

ao  = a,, a1 = -a,, a2 = -a2, a3 = -a3, (2)
so that the scalar  product (ab) may be written

(ab) = apbP = aP bp, (3)
a summation being implied  over a repeated (letter) suffix in a term.
The components ap  are called the covariant components of the 4-vector
a, the original components a,, which transform like  the four coordi-
nates xP of a Point  in space-time, being called the contravariant
components.

The fundamental tensor gPy is defined by

goo  = 12 hl = g22 = g33 = -1,

g,v = 0 for p # Y. 1
(4)

With its help we tan write  the rule (2) connecting the covariant
and contravariant components of a vector

gpyaV  = ap,

T?-



2 7 6 QUANTUM ELECTRODYNAMICS 0 74

and we tan write the scalar  product  (ab) as

(ab) = qpYapbv.

The Operators a/a+  form the covariant components of a 4-vector,
and the contravariant components of the vector  are written a/&rp.
Equations (1) and (2) of 8 66 may be written

and show how the momentum-energy 4-vector  of a particle  is related
to the Operator of differentiation applied to the wave function.

The function S(XX)  is evidently Lorentz invariant. It vanishes
everywhere except on the light-cone with the origin as vertex, i.e. the
three-dimensional space (xx) = 0. This light-cone consists of two
distinct Parts,  a futurepart, for which x0 > 0, and apast Part, for which
x,,  < 0. The function which equals ~(xx)  on the future part of the
light-cone and -S(xx) on the past part of the light-cone is also
Lorentz invariant. This function, which equals 6( xx)x,/  jxO 1,  plays
an important role in the dynamical theory of fields, so we introduce a
special notation for it. We define

A(x) = w=oxo/lx,l* (6)

This definition gives a meaning to the function A applied to any
&vector. With the help of (1) and of (9) of $15, we tan express
~(xx) in the form

6(xx) = ~lxl-‘{qx,--  Ixl)+w%+  Ia7
IX J being the length  of the three-dimensional part of x, and then
A(x) takes the form

A(x) = Ixl-lp(zo-  PO-w%+  IN). (8)
A(x) is defined to have the value Zero at the origin, and evidently
A( -x )  =  -A (x ) .

Let us make a Fourier analysis  of A(X). Using d*x  to denote
dx,,  dx, dx, dx3  and d3x  to denote dx, dx, dx,  we have, for any 4-vector  k,

s
A(x)ei(h)  d4x  = 1 re-l{~(x*- 1 x 1) -6(x,+ 1 x I))e~[~o~-fkx)J  d4x

= j- 1 x  / -l.@ilcolxl -e-C~o!xl)e-f(kx)  @x.

By introducing polar coordinates 1x1,  8, 4 in the three-dimensional
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x1x2x3  space, with the direction of the three-dimensional part of k tw
pole, we get

s A( x)ei(kx)  d4x  = eikohl  - e-ikolxl
>

e-ilklIXlOOS  8 JxjsinB  dOd+djxJ

aJ 77

277 sc eikolxl -= -e- tko’x’> d 1x 1s e-ilkli~l~~~ 6jxIsin(j &l

0 0

= 2& 1 k I-1  J’ (&dxt _ e-ikolxl)  d  1 x ~(e-~lldixl~  eWl~i}

0

= 2& 1 k I-1 { (ei(ko-tkl)a_~~(ko+lkl)cr)  &

-03

= 4n2ilkI-1(8(~o-  /kl)-6(k,+  lkl))

= 4n2iA(  k). (9)

Thus the Fourier analysis  gives the same function again, with the
coefficient 477%. Interchanging k and x in (9), we get

A(x) = -i/4r2.
s

A( k)eitkx) d4k. (10)

Some of the important properties of A(x) tan  easily be deduced
from its Fourier resolution. In the first place equation (10) Shows  that
A(x) tan be resolved into waves all travelling with the velocity  of
light. To get an equation for this result we apply the Operator 0 to
both sides of (lO), thus

mA(x) = -i/4+. A(k)Clei@x)d4k  = i/h2. (kk)A(k)eitkx)d4k.
s s

Now (kk)A(k) = 0, and hence

q IA(x) = 0. (11)

This equation holds throughout space-time. We tan give a meaning
to DA(x)  at a Point  where A(x)  is Singular by taking the integral
of ClA(x) over a small four-dimensional space surrounding the Point
and transforming it to a three-dimensional surface integral by Gauss’s
theorem. Equation (11)  informs us that the three-dimensional surface
integral always vanishes.

The function A(x) vanishes all over the three-dimensional surface
xo = 0. Let  us determine the value of t3A(x)/&, on this surface. It
evidently vanishes everywhere except at the Point  x1  = x2  = x, = 0,
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where it has a singularity which tan  be evaluated as follows. Differ-
entiating both sides of (10) with respect to xO, we get

aA( x)/&+,  = 1/4n2.
$

k,  A( k)ez(kx)  d4k

= 1/4n2.  [ it,/  kl-1{8(&,-  1 kl)--S(Ic,+ { kl))ei(kx)d4k

= lp7P.  1 {S(k,--- 1 k ()+S(k,+  1 k I))ei(kx)  d*k.

Putt@  3, = 0’ on both sides here, we get

[~A(x)/&,Jro=,,  = 1/4n2. S{ 6(Ic,-  1 kl)+S(Ic,+  ( kl))e-i(kx)  d4k

= 1/27T=.
s

e-i(k3  &‘3k

= k w%P(~2P(~,). (12)

Thus the ordinary 6 singularity, with the coefficient 477,  appears at
the Point  x1  = x2  = x3  = 0.

75. The quantum  conditions for the field
In 8 63 a theory of a field of radiation without interaction with

matter was first developed and the interaction was taken into account
subsequently. In the theory without interaction dynamical variables
were introduced to describe the field, commutation relations were
established for these dynamical variables, and a Hamiltonian was set
up which made the dynamical variables vary correctly with the time.
No approximations were made in this work. The theory would there-
fore be a quite  satisfactory, exact theory of radiation without inter-
action  with matter, were it not for one feature in it, namely our
taking the scalar  potential to be Zero at the outset. This feature
spoils the relativistic  form of the theory and makes it unsuitable as
a starting-point  from which to develop an accurate theory of radiation
in interaction with matter. We shall here consider how to put the
theory of radiation without interaction with matter into relativistic
form.

We leave the scalar  potential A,  arbitrary and it then forms,
together with the vector potential A,, A,, Aa, a 4-vector  A,. The
Maxwell equations (62) of 6 63 must then be generalized to

q A, = 0, aA,/axp = 0. (13)
I?or  the present we shall ignore the second of these equations and
work only from the first. This equation Shows  that each  A, tan  be
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resolved into waves travelling with the velocity  of light, so that its
Fourier resolution is of the form

A,(x) =  2 s 6(  kk)A,,  ei(kx)  ddk, (14)

x denoting a general Point  in space-time. The factor S(kk)  here
ensures that the integrand vanishes except for those values of the
4-vector  k which satisfy (kk) = 0, and the coefficient A, may be
considered as undefined except when (kk) = 0. Since  A,(X) is real,
we must have A.+  = xkP,  so (14) may also be written

A,(x) = 2 1 8(kk){Akp ei(kx)+&pe-iOrx’}  d*k. (15)
ko>O

With the help of formula (7) applied to k, this goes over into

A,(x) - [ jkJ-16(ko-lkl)(Ak,ei(Lx)+A,p,-6ck”>)d4k
ko>o

=
s

(A kp ei(kX)+Äkp  e-i(kx))kö~  @k, (16)

where it is implied in the last integrand that i%,  = 1 kJ, i.e. that k is
a 4-vector  lying on the future part of the light-cone.

Equation (16) is usually the most convenient ferm in which to give
the Fourier resolution of A,. For p = 1, 2, 3 it agrees with (63) of
$63, except for the factor &-r in (16). This  factor is a desirable one
to have in a relativistic theory, since  the product Eö1d3k  gives a
Lorentz invariant element on the light-cone (kk) = 0. The Lorentz
invariance  tan be proved by direct geometrical methods, and tan
also be inferred from the above analysis, it being evident that the
coefficient Akp introduced by (14) is a 4-vector  for each  value of k
on the light-cone, so that the factor ( > in (16) is also a 4-vector, and
hence  the remaining factors on the right-hand side of (16) must form
8 four-dimensional scalar.

The quantities A, and MP/aXo  for aI.l  xI,  x2,  xs at a given time

X O = t are sufficient,  with the help of the first  of equations (13),  to
determine the Potentials throughout space-time, so these quantities
may be considered as the dynamical variables describing the field of
radiation considered as a dynamical System. (They are the ordinary
dynamical variables of the classical theory, or the Heisenberg dynami-
cal variables of the quantum  theory.) Define the quantities A,,  for
k, > 0 by AW = A kp eikoxo. (17)
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k,  being understood as equal  to 1 kl in the integrands here. These
equations express A, and aA,/~x,  at time  t as functions of A,,  and
ÄkM not involving t explicitly. By reversing  the three-dimensional
Fourier  analysis  Of eqUatiOnS  (18) We Can  get A,,  and Ak# as
functions of A, and aA,/aX, at time  t not involving t explicitly.
Hence we may take A, and Akpt  for all  p and all k with k,  > 0 as
the dynamical variables describing the System, instead of A,  and
aA,/ax,  at time t.

We must now determine the quantum  condifions for the A,& and
A,,. In the first place,  variables referring to different values of k or
of p belong to different degrees of freedom and therefore commute.
We tan  get information about the quantum  conditions for variables
referring to the same value of k and p from the work of 3 63. To
connect up with this work, we pass over to discrete k-values in three-
dimensional k-space. Equation (73) of 3 63 gives, on taking into
account that the present A, variables are k, times those of $ 63,

.%A,,  = fibkti  yklt  st- w-9

Let us consider one particular  discrete k-value for which  k, = k, = 0,
k, = k, > 0. Then the polarization variable 1 tan take on two values
referring to the two directions  1 and 2, so equation (19) gives, with
the help of the commutation relations for the 7’s and rj’s,  equations

W Of 3 60, ÄkU~kU-A Ä = Gk s /4+~klt k l t

.Ä~&&-fifr~Äk~t  = fLk;&n2: 1
(20)

With the help  of (17),  these equations may be written in terms of the
A kp,  Äkp for k, > 0

Äkl Aki-&& = fik,  8,$hz,

Äk2 Ak, -Ak2Äk2 = #ik,s,J4n2. 1
(21)

The work of 3 63 gives us no information about  Ak3 and AkO.
However, we  tan now obtain the quantum  conditions for Ak3 and

Al, from  the theory of relativity. Equations (21) have to be buhlt
up into a relativistic  set of equations and the only simple way of doing
so is by adding  to them the two further  equations

Äk3  Ak3 -&Äk3  fik,S,/d&

Äp’!tkO--&OÄkO = -fik,  Sk/4T2.
(22)
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Note the opposite sign in the last of these equations. The four equa-
tions (21) and (22),  together with the conditions that AkP  and ALv
commute  for p # V, tan then be written as a Single  tensor equafion

Äkp  Ak” - AkvÄkp = -gpv fiko sk/4n? (23)
We get in this way the quantum  conditions for all the dynamical
variables. Equation (23) tan  be extended to

Äkp An”-  A,J,~ = -gpvj4n2.  fik, sk Skk’. (24)
Let us now return to continuous k-values. To convert Skk’  to con-

tinuous k-values we note that, for a general function f(k) in three-
dimensional k-space,

kf(k) Lc’ = ,f(k’)  = 1 f(k) S,(k-  k’)d3k,  . (25)

where S,( k- k’) is the three-dimensional S function

S,( k- k’) = S(k,- k;)S(k,-k;)S(k,-k;).
In Order  that (25) may conform to the Standard formula connecting
sums and integrals, equation (52) of $ 62, we must have

s,s,,t  = S3(k-  k’). (26)
Thus (24) goes over to

Äkp  Ak’,,-Ak~vÄky = -gp,,/h2. ?ik, SJ k- k’).
This equation, together with the equations

A,,A,,--&d,  = 0,
ÄkpÄL’v-Äk’vÄkp  = 0,

(2’)

1 (28)

provide the quantum  conditions for the field quantities in the theory
with continuous k-values. We have here the formalism which must
be used instead of (11) of $ 60 for dealing with a set of oscillators
whose number is a continuous infinity, equal to the number  of Points
in a volume. The number of degrees of freedom of the System  is a
continuous infinity, and the S function appears in the commutation
relations instead of the two-suffix S Symbol.

The quantum  conditions for the field may also be expressed.in
terms of the Potentials A,(x) at different Points  x in space-time.
We have from (1’6),  (27), and (28)

[A,(x), 4Wl
=

SS[
A, &kx)+Äkp e-i(kx),Ak'vei(k'x')+Äk,v  ,-i(k'x')]&ylk;-l  d3kd3k'

= ~gp,/4r2.  j[ (e-i(kx)ei(k'x')_ei(kx)e-i(k'x')~  S,(k-k')@l  d3&-3k'

z igp,/47r2.
s

(e-i(k,x-~')_ei(k,x-x')~k~l  d3k, (29)
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This three-dimensional k-integral is easily seen to be equal to the
four-dimensional k-integral over the whole of four-dimensional
k-space

igJ47r2.
I

lkl-1(6(Ic,-jkl)-6(lc,+Ikl))e-i(k~x-x’)d4k

= igp,/4nz. s
A(  l+-i(k,  x-x’) d4k.

Evaluating this integral with the help of formula (lO), we get finally

CA,@),  4x’)l = sp Ac- x’>. (30)
We see that Potentials at two Points in space-time always commute
unless the line joining the two Points is a null-line (i.e. the track of
a light-ray).

Let us determine the quantum conditions for the quantities A,  and
aA,/ax,  for various xl, x2, xQ at a givcn time x,,  = t. Using the suffix
t to denote a quantity taken at the time x0 = t, we have, putting
x(J  = x; = t in (30),

P,,(x),  4&0] = 0 (31)
Differentiating (30) with respect to x0 and then putting x. = x0 = t,
we get

from (12). Finally, differentiating (30) with respect to x. and xi and
then putting x. = xi = t, we get

[(!?Lg.);  (!?4$),1  = 0, (33)

since au(x)/ax; = 0 for x0 = 0. We tan, as stated on p. 279, take
the quantities A*(x)  and (aA,(x)/axo}t  as the dynamical variables
describing the System, and equations (31),  (32),  and (33) are then the
quantum conditions for these dynamical variables. From the form
of these quantum conditions we see that, apart from numerical
coefficients, the A,,(x)‘8 tan be looked upon as a set of coordinates
q and the (&4,(x)@xo]~s as their conjugate momenta p, there being
a 6 function  on the right-hand side of (32) instead of a two-suffix 6
Symbol on account of the number of these q’s and p’s being a con-
tinuous intity. The quantum conditions (31),  (32),  (33) still hold
if the radiation is in interaction with matter, and indeed in all Lorentz
frames of reference, but the more general condition  (30) need not then
hold, since the commutation  relations connecting dynamical vari-
ables at different times in general get altered by interaction.
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‘ The electric and magnetic  fields 42  and S form in relativistic
notation a 6-vector  FPV = -Fvp,

El = Flo, & = 40, & = -Gc,>

J+,  = 42, 3, = Fi3> iV3 = Fs,. (34)

The equations connecting &? and jqt  with the Potentials may be
written in tensor form

F
aAv aA,

U V
C P - - - - -

a⌧p a⌧v l

(35)

The quantum  conditions connecting 8 and .# at different Points  in
space-time tan be obtained immediately from (35) and (30).

76. The Hamiltonian for the field
The Hamiltonian for the field, IYR  say, must be Chosen  so as to

give the correct .Heisenberg  equations of motion for the dynamical
variables. This suffices  to fix it, except for an arbitrary constant.
From (17),  the dynamical variables A,,,  vary with t or x0  according
to the law d&Jdt  = ik,  A,,.

Thus from the Heisenberg equations of motion

ifi dA,,Jdt = f%tptHB-HRAkpt

we get -&k, Akp, = 4qdkHRAkpl* (36)

We must choose HR  to satisfy these conditions.
Let us pass  over to discrete  k-values and consider again one

particular k-value for which k, = k, = 0, k, = k. > 0. We then
have the commutation relations (ZO), which show us that, so far as
concerns the degrees of freedom Aklt  and ALU,  HR  must consist of
the terms

4~2(AkllAklt+Ak2tAkU)Sk1, (37)

as these terms substituted for HR  in the right-hand side of (36) make’
it equal the left-hand side. These terms are in agreement with (72)
of $63, if one takes into account that the Aks  there differ from the
present ones by the factor k,. For the degrees of freedom A,,  and
AI,,~  we have, from (22),  the commutation relations

Akg A,,-L&~&~  = hk,  s,/4n2,

AkOt  A,,-A,,-,$,,  = -6k,s,/4n2,

which show similarly that HR contains the terms

~~T~(A~~A~~-A~~A~~)sL~.

1
(38)
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It is convenient to Change this by a constant  and to take instead the
terms 4rr2(Ak31Ak8t-AkD1Ak01)Sp1, (39)

as it will be found later that (39) gives no Zero-Point  energy to NR.
The total Hamiltonian is now

HR = 4x2c (A,,A,,+At2Aka+AkaAk8-Ak0Ak0)~kl (40)
k

= 47T2  (A,,Ä,,+A,,Ä,,+A,,Ä,,-Ä,,Ä,,)  d3k  c41)
s

if we  pass back to continuous k-values. This HR gives, according to
(17) of$29, ed& YfiA k~ e -iHR  tifi = AW = A eikot

ktc ’ (42)

We may cal1 ‘longitudinal degrees of freedom’ the degrees of free-
dom associated with the variables A,,  and Aksr  for the particular
k-value considered above, in contradistinction to the ‘ transverse
degrees of freedom’ associated with the variables Akil  and AkS.  E‘or
a general k-value A,, is to be replaced by AkKt,  x being a unit three-
dimensional vector in the direction of the three-dimensional part of k.
The longitudinal degrees of freedom do not occur in the theory of

0 63,  AkO and A,,  there being Zero. The present Hamiltonian (40)
difEers from the Hamiltonian (72) of fi 63 by the terms referring to
the longitudinal degrees of freedom, these terms being needed now
to make A,,  and ALK1  vary correcfly with t.

We sec  from (39) that the contribution of the degree of freedom
A,, to the Hamiltonian is negative. This means that the dynamical
systeni formed by the variables AkOl,  ALU  is a hurmonic osdutor  of
negative energy. It is rather surprising that such an unphysical idea
as negative energy should appear in the theory in this way. The
negative energy is a necessary consequence of the - sign on the
right-hand side of the second of equations (38) and this - sign is
demanded by relativity. We shall see in the next section that the
negative energy associated with  the degree of freedom A,,  is always
compensated by the positive energy associated with the correspond-
ing longitudinal degree of freedom AkKt,  so that it never Shows  up in
practice.

The theory of a harmonic  oscillator of negative energy may be
built up in the same way as that of an ordinary harmonic  oscillator
given in 6 34. Expressing the AkM of the second of equations (38) in
terms of 7 by means of

%Ä,& = li+ki  skq,
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we have 7 satisfying the Same commutation relation with +i as in
$34, and the energy in this degree of freedom is -fik,-,+j,  from (39).
The werk of 8 34 now Shows  that the maximum eigenvalue of the
energy is Zero,  the other eigenvalues being negative integral multiples
of HC,.  Introducing the normalized eigenket of the energy belonging
to the eigenvalue  zero as the Standard ket IO),  we have

ijlO>  = 0

as in $34, and 7n (0) with n a positive integer is the ket corresponding
to the nth quantum  state, which has the energy -nfik,.  Any kef tan
be expressed as a power series in 7 multiplied into 10).

For the whole field of radiation we tan  introduce a Standard  ket )p,
for which there is zero energy in each  degree of freedom. Any state
of the field of radiation then corresponds to a ket of the form of a
power series in the various q-variables multiplied into )P.  We  tan
replace the power series in the q-variables by a power series in the
Fourier coefficients Aki, Ak2, Ak3, AkO.  The different terms in the
power series correspond to different degrees of excitation of the various
Fourier components of the field. Alternatively, they correspond
to different numbers of photons present in the various stationary
states  of a Photon,  there being now longitudinal photons associated
wifh the longitudinal degrees of freedom, as well as the usual trans-
Verse  ones. (The physical significance of the longitudinal photons
will become clear  later, see p. 305.) If we are working with continuous
k-values, the power series in Aki, Alr2,  Ak3, AL,-,  becomes  a sum of
integrals  of degree 0, 1, 2, 3 ,... in these variables. Any of the linear
Operators &, Äez, Äka, A,,  applied to )*  gives Zero.

77. The supplementary conditions
We must now go back to the second of the Maxwell equations (13),

which we have ignored so far. We cannot  take this equation over
directly into the quantum  theory without getting inconsistencies.
The left-hand side of this equation does not commute  with AJx’),
according to the quantum  conditions (3O), so this left-hand side
cannot vanish. The way out of the difficulty was shown  by Fermi.?
It consists in adopting a less stringent equation, namely the equation

P-q$L) I>  = 0, (43)

and assuming it to hold for any 1) corresponding to a state that tan

t Fermi, Reuiew~  of  Modern Phyak,  4 (1932),  125.
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actually occur in nature. There is one equation (43) for each  Point
in space-time and these equations must all hold for any ket corre-
sponding to a state that tan actually occur. The ket in (43) does not
depend on t,  since  we are using the Heisenberg picture, in which each
atate  corresponds to a fixed ket.

We shall call  a condition such as (43),  which a ket has to satisfy to
correspond to an actual  state, a sup@!ementary  condition. The exis-
tence of supplementary conditions in the theory does not mean any
departure from or modification  in the general principles of quantum
mechanics. The principle of Superposition of states and the whole of
the general theory of states, dynamical variables, and observables,
as given in Chapter 11, apply also when there are supplementary
conditions, provided we impose a further  requirement on a linear
Operator in Order  that it may represent an observable, namely the
requirement that, when it operates on any ket satisfying the supple-
mentary conditions, it changes  this ket into another ket satisfying
the supplementary conditions. We have already had an example of
supplementary conditions in the theory of Systems  containing several
similar particles.  The condition that only symmetrical wave func-
tions, or only antisymmetrical wave functions,  represent states that
tan  actually occur in nature, is precisely of the same type as condition
(43) and is what we are now calling a supplementary condition. In
this theory the further  requirement on linear Operators in Order  that
they shall represent observables is that they shall be symmetrioal
between the similar particles,

When we introduce supplementary conditions into our theory we
must verify that they  are not too restrictive  to allow any ket at all
to satisfy them. If we have more than one supplementary condition,
we tan deduce futher  supplementary conditions from them by taking
P.B.s  of the Operators in them; thus if we have

Ul>  = 0, VI> = 0, (44)
we tan deduce

[v,  VII> = 0, PJ?,  VIII> = 0,
and so on. To verify that our supplementary conditions are not too
restrictive,  we  have to look into all the further  supplementary condi-
tions obtainable by Chis  procedure to see that they tan be satisfied,
which we tan usually  do by showing that after a certain Point  the
further  supplementary conditions are all either identically satisfied
or repetitions of the previous ones.
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To apply this procedure to the supplementary conditions (43),  we
work out the P.B. of two of the linear Operators &4,/%+, say those
at the Points  x and x’ in space-time. We have from (30)

aA,(x) a4w1 = a2A( x- x’) =
gP axpax; -gP

a2A(x-x’)- - -  -
axp ’ ax; axp ax,

=  - • A ( x - x ’ )  = o

from (11). Thus the conditions (45) are all identically satisfied, so OUT
supplementary conditions are nof too restrictive.

We should verify also that the supplementary conditions are con-
sistent with the equations of motion, in the present case  with the flrst
of equations (13). This consistency is immediately evident in the
quantum  theory, as in the classical theory.

Since  the second of equations (13) is not valid and has to be replaced
by a supplementary condition, any consequences of this equation in
the ordinary Maxwell theory will not be valid in the quantum  theory
and will have to be replaced by supplementary conditions. The
equations div& = 0, aA+/at = -cur1e (46)
follow simply from the equations defining 42 and &+  in terms of the
Potentials, namely (35), and are therefore valid also in the quantum
theory. The other Maxwell equations for empty space,  however,
namely div&=O, &S/at  = curl  J+,

0r aE;l,/ax,  = 0,
tan be derived only with the help of the second of equations (13),  as
one sees at once if one substitutes for Fpv its value given by (35), and
are thus not valid in the quantum  theory. They must be replaced by

{dh+}I)  = 0, {ae/at - Cu?!1  J+}  I} = 0, (47)
holding for any J}  corresponding to a state that tan actually occur.

The field quantities 6 and .9# at any Point  in space-time commute
with all the Operators in the supplementary conditions, since  fiom
(36) and (30)

edx’)Fpv(x),7g- 1 [aA,(x)= aA,(x),  aA,(x’)- --- Ih ae axv ) axh 1
a2A( x- x’)

= gVx  axpaxi
a2A(x-x’)  r=

-gpA  ax”axi
a2A(x-x’)  a2A(x-x’)  = o

axccadv  - axvax'r '
It follows that if Cs or .# is multiplied into a ket satisfying the
supplementary conditions, it will give another ket satisfying the
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supplementary conditions, and hence it fulfils the new requhement
for being an observable. The potentials do not satisfy this require-
ment.

By making a Fourier resolution of the left-hand side of equation
(43) we get the equations

k%KpI> = 0, k~-&,l> = 0 (48)
holding for all values of the 4-vecfor  k with Eplc,  = o and k, > 0.
This is another form for the supplementary conditions. The  P.B. of
the Operators kpAkp and kpÄ,,  here,  of course, vanishes, as may be
verified directly from (23) or (27).

To examine the consequences of equafions (48), let us wo& with
discrete k-values and consider f?rst one particular k-value for which
k,  = k,  = 0,  k,  = k,  > 0, as we have done on previous occasions.
For this k-value equations (48) become

(Ak,-- Ak3)l) = 0, (ÄkO--Äk3)I>  = 0. (49)
Multiplying the first of these on the left by (Ä,,+A,,) and the second
by (A,,+A,,)  and adding, we get

(AkoAko+AkoÄko-AksAk3-Ak3Äk3)1>  = 0
or 2(ÄkOAkO -A,,A,,) I> = 0
with the help of (22). This Shows  that the energy in the two longi-
tudinal degrees of freedom for this k-value, namely expression (39),
vanishes for any state that occurs in nature. The same result holds
for all k-values. Thus the supplementury  conditions ensure that the
negative energy in any A,, degree of freedom is alwayß  exactly cuncelled
by the poktive  energy in the corresponding  A,,  depee  of freedom.

Let us express the 1) in (48) in the form

1) = *hi?
where )P is the Standard ket for the field of radiation introduced in
the preceding section, corresponding to zero energy in each degree of
freedom,  and # is a power series in the Operators Aki,  Alt%,  Ak3,  ÄkO.
Since  A,&  = Äk3)R = 0, wt: get from (49),  for the k-value to which
these equations refer,

(AkO +-~~kO))F = Ak3 $b> (A,, S-+~k,>h = A,cl*hP
With the help of the commutation  relations (22), thess equations
reduce to

~k,~k  a*- _--
4w2  aA,, )F = Ak39%Y
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showing that # is of the form

* = ,$7ra-dkosdks/fikoSk
#

1,

where #1 is independent of AkO  and A,,.  Applying this argument to
all k-values, we find that # is of the form

* = &T=  z ako akK/fLko  Sk X, OW

where x involves only the transverse components of A,. In terms of
continuous k-values

# = e47ra  ~~koAkx/bko.ci’kX~
w

We see in this way that the suppiementary conditions  fix  the ferm
of the wave function # so far  us concerns the longitudinal degrees of
freedom. Thus the longitudinal degrees of freedom cannot  play any
important role in the dynamical theory. This corresponds to their
not being of physical importante. Their only purpose is to give the
theory a relativistic setting. The important part of $ is the factor x
referring to the transverse degrees of freedom. This factor is the
same,as  the wave function in the theory of a field of radiation without
interaction with matter given on pp. 240-2.

78. Classical electrodynamics  in Hamiltonian form
The foregoing theory must now be extended to take into account

the interaction of the field of radiation with matter. This  involves
dealing with the dynamical System  composed of a number of charged
particles interacting with the electromagnetic field. Let us fYirst con-
sider this dynamical System  classically and see how to put its equa-
tions of motion into Hamiltonian form. We shall then have a basis
from which  to build up a quantum  theory by analogy.

Esch of the charged  particles  will describe a world-line in space-
time in the classical theory. We give the particles  labels i, j,... and
denote the coordinates of a Point on the world-line of the ith particle

bY qui* These coordinates are functions of the proper-time S, of the
ith particle,  this proper-time being defined so that its differente for
two neighbouring Points  on the world-line satisfies

ds; = (dz,, dz,), dz,/ds,  > 0. (52)

The velocity  4vector  vi of the ith particle  is defined by

Vi = dz,/ds,
and satisfies from (62)

(Vi, Vi)  = 1, v,  > 0.
3696.57 u

(53)

OW
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The presence of charges changes the Maxwell equations (13) to

la$ = 4-n-& aJ3qp/axp  = 0, w
where jP is the 4-vector  whose time component is the Charge-density
and whose space components are the current density. For mathe-
matical simplicity we suppose the Charge on each particle to be con-
centrated at one Point. Then jP vanishes everywhere except on the
world-lines of the particles, where it has singularities which tan be
described in terms of 6 functions. The Solution of (55)  tan be written
in the form (56)

where AP,in are the Potentials of the incoming field of radiation which
acts on the particles and &Pd,retare the retarded Potentials of the ith
particle, the summation in (56) being over all the particles. The
pofentials  A,,, satisfy the equations for no charges, equations (13),
and the J$~~,~~~ are given by

$uip&(X) = t?i  Vpi/(V+ X- Zi)  2 (57)

e, being the Charge of the ith particle, and the variables Vi, zS in (57)
being taken at the retarded proper-time Si of the ith partiole, for which

(x-Si, x-Z$)  = 0, xo$-x~  > 0. (58)
As the equations of motion for the ith particle, we aha11  take

Lorentz’s equations

m,$dd~i= w~~~pv,ill+
2

~F~“~,~t+.hEE~,r*t-~F~yi,ad)> (59)

m, being the mass of the ith particle, Fpv,h and Fp,,j,ret  being the fields
derived from the Potentials A,,h  and AP,,,,  in accordance with (35),
and  Fprt,adv being similarly the field derived from the advanced
potentials &PZ,adv given by (57) and (6;s) with the inequality in (68)
reversed. The field functions on the right-hand side of (59) are all
to be taken at the Point x = z2 where the ith particle is situated.
The summation in (59) is over all the particles except the ith and
Shows  that all the other particles act on the ith through their retarded
fields. The fields FphJet  and F’yi,&dv are infinitely great at the Point
x = zi, but their differente  is &n.ite,  and this differente  occurring in
(69) gives the effect  of radiation damping on the motion of the
partic1e.t

t For a derivation of Lorentz’s equations in the form (59) and a discussion  of their
validity and comequencea,  sec  Dirac,  Proc.  Rey.  Sec.  A 167 (1938),  148.
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Our Problem  now is to put the equations of motion (59) into the
Hamiltonian form. Let us Crst  discuss  in general terms  what we
should expect the Hamiltonian form to be like  in a relativistic theory.
We should not keep precisely to the form (14) or (15) of $28, since
this puts the time on a different footing from the space coordinates.
We should expect to have the proper-time appearing as independent
variable, and since each particle has its own proper-time we must
then have several independent variables. Esch dynamicd  variable 6
is thus in general a function of the proper-times 8; of all the particles
and has a value only with respect to a particular  Point  on the world-
line of each  particle. The general concept of a P.B. satisfying the
laws (2)-(  6) of 5 21 tan be retained in a relativistic theory. We shall
need one Hamiltonian for each  particle, the relativistic Hamiltonian
Gi of the ith particle determining how dynamical variables vary with
the independent variable s,,  according to the equation

d&& = [f, Qs]. (60)
In Order  that  the various equations (60) for different i shall be con-
sistent they  must make

d2f/dai &Sj = d2f/dSj dsi,

which  requires that

[[t, GjJ  Gi]  = [[f,  Gi],  Gj]

or [[G$,  Gj], IJ = 0, (61)

from (6) of f; 2 1. This must ‘hold for any dynamical variable 4, so we
must have [G+  Gj]  = a number. (62)

Equations (60) and (62) give the general Hamiltonian form of the
equations of motion in a relativistic theory of several particles.

Let us consider the dynamical variables for our System  of several
charged  particles interacting with  the electromagnetic field. The four
coordinates zNi of the ith particle will provide four dynamical vari-
ables, the time  coordinate being treated on the same footing as the
three space coordinates. The four components ppi of the momentum-
energy 4-vector  of the ith particle will provide more. As the obvious
generalization of the P.B. relations between coordinates and momenta
in non-relativistic dynamics,  we assume
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The variables xFi, pFcli should depend only on the proper-time Si  and
should be independent of the proper-times sj  (j # i) of the other
particles, so from (60) we must have

[zpi, Gj]  = O, bpi> Gj]  = 0 (j fr Q. (64)

We need also dynamical variables to describe the field. We take
these to be the potentials A,(X) at all Points  in space-time. The
4-vector  x here should be looked upon as a Parameter labelling these
dynamical variables, there being four of them for each  x. Esch  of
these dynamical variables A,(X) is a function of the proper-times 8,.
Thus all the A,(x) variables together provide a set of Potentials
throughout space-time depending on a Point  on the world-line of each
particle. These Potentials are therefore not the same as the Maxwell
potentials J$~(  x) satisfying (55). We shall call  them the Wentxel
potentiaZs.t  They are closely related to the Maxwell Potentials, as
will appear later.

Since  a particle variable and a field variable refer to different
degrees of freedom, their P.B. must be Zero,  i.e.

[$i,  4(x)] = 0, [Ppi,Av(x)]  = O* (65)

We need also the P.B. of two field variables. A value for this P.B.
is provided by the theory of radiation without interaction with
matter, namely by equation (30) considered classically. This equation
as it Stands, however, is not a satisfactory one to use when there are
charged  particles present, as it Causes certain infinite terms to appear
in the equations of motion of the particles. One must replace it by

[A,(x), &,(x’)]  = &&(x-x’+N+A(x-  x’-hl), (66)

where X is a small 4-vector  lying.within the light-cone, i.e.

(LA) > 0, (67)
and is ultimately to be made to tend to Zero. One must not make
A -+ 0 too early or one will get infinite terms appearing in the equa-
tions. With finite A the theory is not relativistic,  as the direction of X
provides a preferred direction in space-time, but it will be found that
as A -+ 0 the equations of motion become independent of the direction
of h, so long as (67) is satisfied, so that in the Limit  the theory is

Y

t These Potentials were  first  used  to give  Lorentz’s equations of motion by Wentzel,
2.  f. PhyeZk,  86 (1933),  479.
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relafivistic. Equations (63), (65), and (66) give the P.B.s  of all our
dynamical variables.

We must now set up fhe Hamiltonians. We shall  assume that

Qi = ~~rnZ-(Pi-eiA(zi),~i-~iA(zi))) (68)
i

and shall verify that these Hamiltonians lead to the correct equations of
motion. Let us first test for consistency. We find from  (63),  (65), and
(66) that [Gi,  Gj] = 0

provided the conditions

tzi-ZjfA>Zi-ZjfX)  < 0 (i # j) (70)

are fulfilled. These conditions mean that the independent variables
Si are not completely  independent, but must be restricted so that the
Points  which they specify on the world-lines  of the various particles
each lie outside the light-cones with the others as vertices  (and remain
so when shifted by the amount hl). Subject to these conditions the
equations of motion are consistent.  The dynamical variables should
now be considered as undefined for values  of the si which do not
fulfil (70).

Let us consider now the equations of motion. We see at once that
equations (64) are satisfied. Putting t = zcLi  in (60),  we  get

= %pI aGivpi ds=-T
i 3Pi

= + {Ppi-%  Ap(zi)), (71)

which is the usual relation between velocity  and momentum  for a
charged  particle.  From  (54) and (68) we see now that

Gi  = 0. (72)

Equations (69) show that the Gi are all constants of the motion and
(72) Shows  that we must take these constants to be zero to get the
equations of motion that we Want.  Putting c = ppg in (60),  we get

dP,i  =  3- -
ds, aq

= J$p; -ef A”(Q) 2 _ YL 12-a
which reduces,  with the help of (71),  to

(73)
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This would be the same as Lorentz’s equation (59) if we could arrange
to have

for x in the neighbourhood of zi.  Finally, putting 4 = A,(x) in (60),
we get dA,(x)

dsi = $2X-ei Nz,)>[A,(x),  A,(z,)]

= +e,wJA(x--zi+h)+A(x-zi-h>). (75)
These equations for all i tan be integrated to give

A,(x)  = c 8% J $i{A(4
x-z;+A)+A(x-z;-A)]  dg;+a,(x),  (76)

-Co
where vi, z; are short for v&&),  z,C&), and a,(x) is a constant of the
motion for each x and t~, i.e. it is independent of the Si. Equation (76)
Shows  the form of the Wentzel Potentials A,(x) as functions of the Si.
These equations, it should be remembered, hold only for values of the
s, satisfying (70); for other values of the si the Wentzel Potentials are
undefined.

In Order  to sec  the significance of (76),  let us study the integral
81

s +A(x-z;) ds;. (77)
-03

If the Point x lies inside the future part of the light-cone of zi at the
proper-time s,, i.e. if

(x-Z$,  x-z,) > 0, xo-x(-ji  > 0, (78)
then (77) vanishes, since the A function vanishes throughout the
domain of integration. If the Point x lies outside the light-cone of
Zi, i.e. if

(X-Z.jj X-Zi) < 0, (7%
there is just one value of 8: in the domain of integration for which
the A function does not vanish, namely the retarded proper-time for
the field Point x. The integral (77) is then equal to, with the help
of 6%

84

s

Q
w;( A(x-z;)  ds; = 2

s
vii S(x-z;,  x-z;) ds,;

-aO -CO

= - 2
s

VLi S(X-Zl,  X-Z:) , d(x-z;, x-z:),
d( x-z;, x-Zi)/dsi

-P
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where JJ is a positive number. The integral now becomes
Co

s

t
Qi V/Li

Em)
6(x-z;, x-z;) d(x-z;,  x-z;) =

(Vi, x-q)
- P

taken at the retarded proper-time. Thus from (57)
Si

ei s v;,  A(x-z;) dt$  = c~$~,~~~(x).
-Co

If the Point x lies inside the past part of the light-cone of zi, i.e. if

(x-zj, x-Zj) > 0, q)--xoj  < 0, (81)
there are two values of 8: for which the A function  does not vanish,
namely the retarded and advanced proper-times. The contribution
of the retarded proper-time to the integral (77) is the same as in the
preceding case;  the contribution of the advanced proper-time may
be worked out by the same method and is, when multiplied by ei,
- -532pi,&dvw s umming up our results, we have

Si
ei s

vki A(x-z;) ds; = 0 when (78) holds,
- C O

(82)= ~pi,redX) when (79) holds,
1

= saZ,,,,(~)-~~~,,,,(x) when  (81)  ho1ds.j
Substituting the results (82) with x&X for x into (76) we find, for

x very close to zi (close compared to h), taking into account (70) and
(67) and taking h.  > 0,

J$&(x) =~i4{~~r,t(x+A)+~~~,,t(x-X)}+

+9~~,t(x-h>-8~~j,~~~(x-h)+a;,(x).

If we take a,(x)  = ~p,i.tlw~ (83)
this agrees with (74) in the limit h = 0. Thus the choice  (83) for the
constants of the motion a,(x)-a choice which is permissible since
neither side of the equation depends on the s,--results in the equations
of motion for all the particles  becoming the Loren&  epuatzons  in the Limit
A 0.=

The ingoing Potentials AP,in must satisfy the equations (13) but are
otherwise undetermined. Thus the constants of the motion a,(x)
must satisfy

q a,(⌧) = 0, au~(⌧)/a~p  = 0 (84)
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but are otherwise arbitrary. Inserting  these conditions in (76) we

find, with the help of (ll),

q IA☺X) = 0, (85)81?A,W_I-- =axP x-z;+h)+A(x-z;--7~))  da;

&
_ - {A(x-z;+7~)+A(x--z(4)] da;

=- &A(x-zl+h)+A(x-z;-h)}  ds;
i

= - 2 &ei{A(x---zi+A)+A(x--zi--X)j.
i

(86)

The work of this section tan  be summed up as follows. To describe
a number of charged  particles  interacting with the electromagnetic
field we need the dynamical variables xpi,  ppi,  A,(X) satisfying the
P.B. relations (63),  (65),  (66). The equations of motion then take the
Hamiltonian form (60) with the Hamiltonians  Gi given by (68),  pro-
vided one imposes  certain conditions on some of the constants of the
motion, namely the Gi’s  must vanish and equations (85) and (86)
must hold.

The equations (85) and (86) for the Wentzel Potentials A,  should
be compared with the equations (55) for the Maxwell Potentials J$~.
Of the two equations (13) satisfied by the electromagnetic Potentials
in the absence  of charges, the first gets modified by the presence of
charges in the case  of the Maxwell Potentials and the second in the
case of the Wentzel Potentials. For a field Point  x lying outside the
light-cone of all the electron Points  zi,  each of the integrals in (76)
is given by (80) and the right-hand side of (76) becomes equal to the
right-hand side of (56) in the limit A = 0. Thus for this domain of x
the Wentzel and the Maxwell Potentials are equal.

79. Passage’to the quantum  theory
Let us now construct a quantum  theory analogous to the classical

theory of the preceding section. We use the same dynamical variables
as before, namely the particle  coordinates xpi and momenta p,$ and
the Wentzel Potentials A,(x), and assume them to satisfy quantum
conditions corresponding to their having the same P.B.s  as in the
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classical theory, given by (63),  (65),  and (66). The classical Hmil-
tonians (68) should be replaced by Hamiltonians.of  the ferm given
in the preceding chapter,  applying to particles with a spin 46, in Order
to get satisfactory relativistic  wave equations. Thus we must intro-
duce further  dynamical variables to describe the Spins. For the ith
particle we need the spin variables olri  (r  - 1,2,3) and ol,+  which
anticommute  with one another and have their squares equal to unity,
and which commute  with all the X~j,  p~j and A,(X) variables, and
also with the spin variables of the other particles. We tan then  set
up Hamiltonians of the form of the Operator in (9) and (10) of 3 67,

to replace the classical Hamiltonians (68),  A,, being written instead
of A(zJ  in the three-dimensional scalar  product.

We describe a state of motion of the whole System  of particles and
field by a wave function in the coordinates and times xPi  of the
particles, which wave function is a ket in the other degrees of freedom,
i.e. those of the field and of the Spins of the partielea.  Following the
notation of the end of § 20, we write this wave-function-ket as Jz).
It must satisfy the wave equations

GiIz) = 0, (88)
which may be looked upon as supplementary conditions correspond-
ing to the classical equations (72). For the various equations (88) to
be consistent  we need, by an application of (45),

[Gi,  c,]lz> = 0, (89)
a rather more stringent condition than the classical consistency con-
dition  (62). With the Hamiltonians (87),  [Gi,  Gj] = 0 when (70) holds
and the condition (89) is then satisfied. The conditions (70) tan be
brought in by supposing that (z) is defined only for values of the
z-variables satisfying (70)) so that it is only in this domain  of defini-
tion of lz) that equations (89) have to hold. The wave equations
(88) are consistent  in this domain.

The remaining equations of the classical theory, equations (85) and
(86),  must now be taken over into the quantum  theory. Equation
(85) may be assumed to hold unchanged  in the quantum  theory, as
it does not give rise to any inconsistency because  its left-hand side
commutes  with all the dynamical variables. Equation (86) must be
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replaced by a supplementary condition, as otherwise it would lead
to inconsistencies. Defining R(X)  by

R(x) = &4,(x)/8xp+ 2 &e,{A(x-zi+A)+A(x-z+)), (90)
i

we take the supplementary condition

R(x)p)  =  0 (91)
holding for all x as the quantum  analogue of the classical equation
(86). It is a generalization of the supplementary condition (43) for
no charges.  We have, using (66),

[R(x),pp,--eiA,(zJJ  = --~~(x)/~+-ei[-RX)~ AP(%)]

(A(x---q+h)+A(x-q-A))-

x-z,+A)+A(x-z,--A))

= 0, (92)
so that from (68) [R(x), Gi]  = 0. (93)
Thus the supplementary conditions (88) and (91) are consistent.
Again

[R(x), R(x’)]  = pp,  y]
P Y

= -8  Cl {A(x-x’+A)+A(x-~‘-4))  = 0 (94)
from (1 l), so that the various supplementary conditions (91) obtained
by putting different values for x are consistent with one another.

We now have the complete scheme of quantum  equations corre-
sponding to the classical theory of the preceding section,  namely the
P.B. relations (63),  (65),  and (66) together with the equations (86),
(88),  and (91),  and have verified that they are all consistent for the
domain of the z’s for which  (70) holds. If some of the particles are
of the same kind and are bosons or fermions, the further  conditions
must be imposed that jz} is symmetrical or antisymmetrical, as the
case  may be, between the coordinates (and spin variables) of the
similar particles.

The wave-function-ket lz},  if normalized, has the physical inter-
pretation that (z jz)  is the probability, per unit three-dimensional
volume for each  particle,  of each  particle being in the neighbourhood
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of the place fixed by its coordinates xIi, xzz,xQt  at the time xgi.  The
theory allows one to calculate this probability, for any state of
motion of the System, only provided the conditions (70) are satisfied,
which means, in the Limit A = 0, that the Points  zi in space-time must
each  be outside the light-cones of the others. The observations of
whether the particles are at the places  xli, xzi,  xQi at the times xgz  are
thus compatible observations only provided the Points  Zu  in space-
time are outside each  other’s light-cones. This result of the theory is
to be expected on general physical grounds, since  the Observation of
whether a particle is at a particular place at a particular time may be
expected to produce a disturbance throughout that region of space-
time lying inside the future light-cone of the particular place and time.

Equation (85) enables us to resolve the Potentials into their Fourier
components according to

A p( x) = 1 (A+ ei(kx)+A,p  e-i(kx)]k;l  d3k (95)
with fio = lkl, (96)
as in the case  of no charges.  The Fourier coefficients Akp  no longer
satisfy the commutation relations (27) on account of the occurrence
of X in (66). They still satisfy (28) and instead of (27) they satisfy

Äkp Ak‘v -A,,Äkp  = -gpv/hr2  .f%,  COS (kh)  6,(k- k’), (97)

as may be verified by noting that (28) and (Si)  lead to equation
(29) with the extra factor  cos(kh)  in the integrand and this extra
factor  makes equation (29) lead to (66) instead of (30).

It is conveuient to redefine Akr for those values of k for which
cos( kX)  is negative so that

newAkP  = -oldÄ-,P.

Thus the new Fourier coefficient A, exists when I&cos(  kh) > 0.
With A very small, the redefinition affects only Fourier coefficients
with very large k-values. With the new Akr  equation (95) still holds
if (96) is replaced byt’

lt0 = lkl ICOSW I/C~Swo (98)
t If A  does not he  along the time axis  there  arc  some  regions of (FC,  k,  &J-space  for

which there  is no h,,  satisfying (98) and others for which there  arc  two. The integral
(95),  and similar integrals  in the future,  are then to be understood  as taken over the
domain  of (Jcl  kn  kJ-space  for which (98) has a Solution and as summed  over  both
values of the integrand for that part of the domain  for which (98) has two solutions.
From the four-dimensional  Point  of view, the domain  of integration is that part of
the light-cone (kk) = 0 for which fi,,  cos(kh)  > 0, and is Lorentz  invariant for a
given  A .
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and (97) holds unchanged.  The right-hand side of (97) with  k = k’
is now always positive for p = v = 1, 2, or 3 and negative for

P= v = 0. This enables us to express any ket in the degrees  of
freedom of the field as a power series in the variables Aki,  Ak2,  AL3,
and AkO multiplied into the standard  ket >P  corresponding to no
energy in each  of the degrees of freedom, as we had at the end of 5 76.
Expressing the wave-function-ket 1~) in this way, we have

iz>  = *>F (99)
where # is a power series in the variables Aki,  A,,,  Ak3, Ak,,,  whose
coefficients are each  a wave function in the z-variables and a ket in the
spin degrees of freedom. These coefficients correspond to there being
different numbers of photons in the various degrees of freedom of the
field.

80. Elimination of the longitudinal waves
The electromagnetic field in the foregoing electrodynamical theory,

both classical and quantum,  involves longitudinal waves as weh  as

transverse ones. The Potentials A,(x) may be expressed as

A,(x) = L,WS~p(x), (100)
where L,(x)  are the Potentials of the longitudinal waves and M,(X)

those of the transverse waves. The longitudinal waves arc  made up
of the components A,, and A,, of the Fourier component Akp, as

discussed in Q 76. Here A,, is the component of the three-dimensional
vector A,, (r = 1,2,3)  in the direction of the three-dimensionalvector
kr, so that, expressed as a three-dimensional vector, it equals
(kA,)Xc,  kö2. Thus

4lw = A,,(x),

,Q(x)  = J ((  kA,)ez(h)+ ( kÄJe-i(kx)jkr  kö3  d3k. (101)

These equations fix the longitudinal part of the Potentials, and the
transverse part is then fixed by (lOO),  i.e.

M,(x)  = 0, Mp(x) = A,(x)-&(x). ww
The longitudinal waves are not physically important. They tan

be eliminated from the equations by a certain mathematical trans-
formation, which  forms a generalization of the method which  led to
equation (51) for the case  of no charges.  The equations are thereby
simplified and brought into more direct connexion with experiment,
but they lose their relativistic form, as the Separation of the field into
longitudinnl  and transverse waves is not Lorentz invariant.
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By  making a Fourier resolution of the left-hand side of equation
(91) we get, with the help of (10),  the equations

-PPAk, -cos(  kh)/M. 2 e,  e-i(kzt)) 12)  = 0,
-

Pc Ap i 1
W)

forming the generalization of (48). If for the moment we take discrete
k-values, the commutation  relations (97) become, from (26),

Äkp&c- A,.,& = -gp,/4n2.  !ik, cos(  M)s,  Bkkt, (104)

and show us that, with the notation (99),

AkO *b = ~kocow+k a* )~ ---=--
479 aA,, F’

Thus equations (103) become, on multiplication by 4n2/cos(  kh),

?ik; sk --$-)37 -
k0

----$&  (kA,)  + 2 ei  e-“‘“)]#),.  = 0,
i

-'kO  'k
c
b aA

Y

-!!!!- & + ($) Ao Äko-  T ei eitkzi) #)p  = 0.
kr 1

These equations holding for all k show that + is of the form

* = esjfiX1, ww
where

w

8 = k k~28~1{4n2(kAk)Äko/~OS(k?L)+

+ F ei[Äko  e-i(kzf)-köl(  kAk)eitkq)]}

and xl is independent of A,,  and Äko. Passing  back to continuous
k-values, we find that # is still of the form (106) with 6’  given by

fl = j- {4*2(kii&&/COS(kh)+

+ F %LÄkO
e-i(W-&l( kAk)ei(W]}JC,-Z  #k. (107)

Thus, as  in the case  of no charges,  we find that the form of the wave
function # is fixed so far as concerns the Iongitudinal degrees of free-
dom. The important part of # is the factor xl, which involves only
the transverse components of Ak7,  together with the z’s and spin
variables.

We may Iook upon xr as a wave  function from which the longi-
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tudinal waves have been eliminated. We tan obtain wave equations
for x1 in the following way. We have

ppj esIn = es~fippj+ia~/a2~

= eS!fippj+ej 1 kp[Äkoe-i(kz~)+k;l(  kA,)ei(J@]Tc;2  d3k. (108)

Using this result for p = 0, we get

tPoj - ej LO(Qt9P

= {PO*-ej S[
A,,  ei'bi'+Äko  e-i(k+]köl  d3 k)ewnQs

= es~fipoj~l)~+ej f [(kAk)-ko&o]eick~%~2  d3k  es/fiXl}p

= es'fiPOj  Xlh-ej/4n2.  J$ ei J cos( kX)ei(k+-%&-2  8%  eSjfiX1)F
i

with the help of the first of equations (103). Again, using (101) and
(108) with p = r, we get

bj-ej 4wM~~

= (Pr*- ej 1 [( kAk)ei(k+-  ( k~k)e-i(kzj)]&,  i?ö3  d3k)es~fiX,)p

= esbrj  XJF + ej S[ICOÄkO- ( kxk)]e -iWkr  kö3 d3  k @lfiXl)p

= esifiprj  xJF+ej/4n2. 2 e,  j cos( kh)ei(k,q-@k,.  kö3 d3k  esjnX1)F
i

Mth the help of the second of equations (103). These equations may
be oombined as

bP3-ej LcL(~j)M)F  = es’fi{Ppj-ej  Bfi(zj))X1~F~ ( 109)
where

B,(X)  = 1/4n2.  2 ei 1 cos( M)e”(k+-q)kö2  d3k,.

Br(x)  = - 1/4rrl C ei  1 cos( n)e-i(kx-zt)j&  kö3 d3k, .
i

The equations may be simplified by a further transformation, namely

Xl = eTifix, (110)
where

T = - 118~‘.
? si

ei  ej COS( kh)cos(  k, Zi--Zj)k<’  d3k* (111)

Equations (109)  go over into

bccj- ej  L,(z~)}#)~ = ds+23’f”(~p~-  ej  B,(Zj) + iaT/a$)X)F

= dsfT~h(13CLj-ej  b,(Zj)>X>F, (112)
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where

b,(x)  = B,(x)--i/W.  C es  f cos( kA)sin(  k, x-z,)$ kö3 d3k

=  & 1/W.  2 ei /'oos(kh)oos(k,  X-Zi)kp kö3  d3k, (113)
i

the + or - sign being taken according to whether ,x  is zero or not.
With the help of (100) and (112),  the wave equations (87),  (88) go

over into

(popQo(~j)+(a~,  pi-ej~~-ejM,)+ar,jmi)x)~  = 0. (114)
The variables describing the longitudinal waves have all disappeared
from these equations. We may take x as the wave function for the
theory in which the longitudinal waves have been eliminated (it is
rather more convenient for this purpose than xJ,  and equations (114)
are the wave equations which it has to satisfy. The influence of the
longitudinal waves now Shows  itself up through the functions  b,(z,)
of the particle  variables appearing in the Hamiltonians. The supple-
mentary conditions (91) have been satisfied through our using (106),
and drop out of the present formulation of the theory.

To work out the function b,(x) we must evaluate integrals of the
form I,(x) = j- cos( kx)lc, kö3  d3k (115)
for a general 4-vector  x, with k, given by (98). Since  the integrand
in (115) is unchanged  when -k is put for k, the integral is equal to

I’(x)  = Q F 1 cos(  kx)kp  kö3  d3k,
0

where
F

means summing over both values -J--  1 kl  for k,. Thus $(x)
0

equals
Ij(x) = & 1 A( k)cos( kx)k,  kö2  d4k.

This integral may be evaluated most conveniently from formula (lO),
which gives us, on taking the real part of both sides,

8 s A(k)sin( kx)  d4k  = 273A(x)
= 27PJxJ-yqX*-- IxIF-~(~o+  Ixl>l*

Integrating both sides here with respect to xo,  we find

Io(x) = Q j A( k)cos( kx)k;l  d4k  = 0 for txx)  > ‘, (116)
= 2T2jq-1  for (XX) < 0, 1

the constant  of integration being fixed by the condition that I,(X)
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vanishes for x0  + &-00 with xl, xz, x3  fixed. Integrating (116) with
respect to xO, we  find

+ s A( k)sin(kx)t;2  d*k = -2~2 for (xx) > 0, x0  < 0,

= 2n2x01x]-l  for (xx) < 0,

= 2772 hl! (xx) > 0, xg  > 0,

the constant of integration being fixed by the condition  that the
integral vanishes for x,,  = 0. DifFerentiating with respect to x,,,  we get

I,(x)  = 4 1 A(k)cos( kx)-,  kö2  d4k
= 0 for (xx) > 0,

= 2~~x~x,lxl--~  for (xx) < 0. 1
(117)

Using the results (116),  (117) in (113),  we get, with reference to (7O),

The terms i = j in the sums are zero on account of (AA) > 0. These
terms would have been infinitely great if we had put A = 0 in ( 113),
so we sec  here the need for not passing to the limit X -+ 0 too early
in the theory. However, it is permissible to puf Ar = 0 in (118),  so
we  may take

The relativistic form of the theory has been  spoilt by the elimina-
tion of the longitudinal waves. There is now not much Point in
retaining different time variables zOt  for the different particles. By
putting all the ~‘8 equal to t we tan get a further simplification of the
equations. We have in the fist place b,(zj)  = 0. We tan write the wave
equations ( 114) as znaxja2,  = qx,
where Hj = ej U$)-(aj, Pf-ej  KJ-Q,j  mje
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We then have

Thus the wave function xzoZt  satisfies one wave equation, in which
the Hamiltonian is the sum of the Hamiltonians in the many-time
formulation.

The total contribution  of the b,(zj) terms to the Hamiltonian

ZH
i

j is .
2 ejb,(Zj) = z eiej/lZj--251. (9
j 4-G

This is precisely the Coulomb interaction energy. Thus the  Zongi-
tudinal waves get repluced  by the Coulomb interaction energy in the
single-time  formulution of the theory. We tan  now see the real signifi-
cance  of the longitudinal waves of the Wentzel field. They are to
enable one to bring the Coulomb forces into electrodynamics in a
relativistic  manner.

A fvrther transformation of the wave equation is of interest.  Let
us put Y = e-iHRanxze=t, (122)

where HR is the Hamiltonian of the field in the absence of charges,
given by (41),  and let us consider Y as a new wave function. It
satisfies the wave equation

%dY]dt  = (HR+  2 H;)Y?, (123)
i

where Hf = e -OHR  t/fiH$  eiH&  t/fi

=  ejbo(zj)-(aj,  Pj-ejMG)-amjmj,

with B?:(x)  = e-SHRW~~(  x)eiBRt/fi.

If we express MP(x)  in terms of its Fourier components

M,(x) = J {Nkr  ei(kX)+2Mk,,  e-i(kx)jk;l  d3k, (124)

Mk,.  being the part of the three-dimensional VeCtOr  Ak,  perpendicular
to I%,,  then we have, with the help of (42) and (1),

HT(t,  xl, x2,  x,) =
I

{i&  e-i(kx)+~k,.ei(kx)]köl  d3k. (125)

Thus MF(t,  xl,  x2,  x,) is a function of the iV&,  z& not involving t, and
is a constant  linear Operator. The Hamiltonian in the wave equation
( 123) is now constant,  and the wave equation itself is of the usual
form for an isolated System  in non-relativistic theory. Further,  the

3595.67 X
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Hamiltonian in (123) is just what one would get with the non-
relativistic theory of 3 62 if one takes for HP in equation (53) of $ 62
the proper-energy of a set of particles each with spin @,  together
with their Coulomb interaction energy. This rather surprising result
means that the theory of $ 62 applied to particles with spin $6 and
with Coulomb interaction energy is essentially a relativistic theory,
leading  to physical consequences which  are invariant under  Lorentz
transformations, in spite of the form of the theory departing so much
from the usual relativistic requirements.

81. Discussion  of the transverse waves
Let us apply the theory of the preceding section to the case  of a

Single  particle. There is then just one wave equation (114)  and the
terms involving b drop out, so the wave equation becomes

h+ (aP) +aw,  m>x&  = e(aW)x>~. (126)
This is the wave equation for a Single  particle interacting with the
electromagnetic field. Let us try to get a Solution of it on the
assumption that the interaction ferm in the Hamiltonian, namely
e(aM,),  is small.  Such a Solution would be of the form of a power
series in the Charge e,

X = xo+ex1+e2x2+.-, WV

where  xo,  xl,  x2,-. are independent of e. Substituting (127) in (126)
and picking out terms of different degree in e, we get the successive
equations (128)

h-t- (aP) -I-a,  m>x&  = (aW)xO>F, (129)

(PO+  NP)  +em m}x2>F = (aM,)x&. (130)
A Solution of (128) corresponding to the particle having the energy

and momentum  p’, with (p’p’) = m2,  and no photons present is

xo = e-i(P’dh  IB),
(131)

where 1s)  is a ket in the spin degrees of freedom satisfying T

@O+(aP’)+oL,m)ls>  = 0. (132)
Substituting (131) in (129) and using (124) and

a6,JF = 0, (133) t
we get

c23O+(QP)+%m)xI)F  = s
(aM,Jei(k-P’~fi~z%;l  d3kls>)F.
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To solve this equation for xl,  we multiply both sides by the Operator
(po---(ap)-a,m}  on the left, which  gives

f( PP) -m21x1h

= {24r(aP)-%m) I
(aM,)  ei(k-P’~fi+)lc;l d3 k J s))~

= {&--&,--(a,  p’-~k)-a,m)(aMk)ei~k-p’~~~z~~~1d3k~~>)~.  (134)
f

The Operator (( pp)-m2)  applied to the integrand here is equivalent
to the multiplying factor

(-fik+ p’, -fik+ p’)-m2 ‘= -2Ti(  kp’),

and hence  a Solution of (134) is

Xl = ----8ms1 1 (kp’)-l{&-iiICo-  (a, p’-fik)-a,m)(aMk)  X

x  e~(k-P’Ifidk;l  @k  18).

This x1  is linear in the i&,.  variables and corresponds fo one Photon
being present. Substituting this x1  into (130),  we see that xz is of the
form

x2 = xh2’+xi0) >
where

{po-J- (ap) --J-a, rn)x2)&  = s (ah!ikR)ei(k’Z)kb-l  d3k’  x~>~, (1%)

j2io+(aP)+%m]Xi0)),  = s
(aMw)e-i(k’~)k~-l  d3k’  x&.  (136)

The right-hand side of (135) is quadratic in the Mkr  variables and
leads to a quadratic xc), corresponding to two photons being present,
while (136) leads, as we shall see, to a xb”)  independent of the Mk?
variables, corresponding to no photons present.

The right-hand side of (136) contains terms of the form ~k#,,&&&,
so far as concerns the field variables. Such a ferm becomes, with the
help of (133) and of the commutation relations (97),

igcdFks)P = @fkd&ä”isBkrh’

= -gr,/4n2.  %k,  cos(  kl) 6,( k- k’)&

if r and s denote directions  in three-dimensional space perpendicular
to (k, Ic, k,) and either equal or perpendicular to each  other. Using
this result, the right-hand side of (136) becomes

-w~2*  f[ c 44-fik,-(a, p’-?ik)-01,  rn)aT( kp’) -l  cos(  kh) x

x ei(k-k’--P’jn+)  6,(k- k’)&-1  d3kd3k’Is)>F, (137)

where the summation with respect to r refers to two perpendicular



308 QUANTUM ELECTRODYNAMICS 9 81

directions  for r which are both perpendicular to (k, k,  k,).  The
expression (137) reduces  to

_ 1 /ST2 , e-Wz)/fi
B (

ar po---G&--(cr, p' -~k)-~~m)~r(  kp’)-l  x
r

x cos(  M)k;l  d3kls)jF.

This is a divergent integral since  it contains, amongst other terms,
one involving s (kp’)-l cos( kA)  d3k,

which diverges, with k, given by (98),  even before passing  to the
limif  h --+ 0. We tan conclude that the  wawe  equation (126) has no
solution of the ferm  of a power series in the cbrge  e. This conclusion
must hold also for the wave equation for several particles-the trans-
Verse electromagnetic waves always lead to divergent integrals when
one tries  to get a Solution of the form of a power series in the charges
on the particles.

We have here a fundamental difficulty in quantum  electrodynamics,
a difficulty which has not yet been solved. It may be that the wave
equation (126) has solutions which are not of the form of a power
series in e. Such solutions have not yet been found. If they exist
they are presumably very complicated. Thus even if they exist the
theory would not be satisfactory, as we should require of a satis-
factory theory that its equations have a simple solution for any
simple physical Problem,  and the Solution of (126) for the trivial
Problem  of the motion of a Single charged  particle in the absence  of
any incident field of radiation has not yet been found.

Quantum electrodynamics has many satisfactory features in it,
closely analogous to various features in classical electrodynamics.
One tan get from it finite and reasonable answers for Problems  con-
cerning the emission, absorption, and stattering  of radiation whose
wavelength is not too short, by cutting off the divergent integrals at
a value for 1 k 1 of the Order  2nm/i2,  which Gutfing  off means physically
that the contribution of transverse electromagnetic waves of wave-
length less than e2/m  to the process under  investigation is neglected.
The wavelength  e2/m  is Chosen  for the tut-off because  it is of the
Order  of the classical radius of a particle of Charge e and mass m on
Lorentz’s model of the electron.  The cutting off is not a relativistic
procedure and tan  lead to weil-defined results only for Problems  in
which the important wavelengths are considerably greater than el/m.

It is probable that some deep-lying changes  will have to be made
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in the present formalism before it will provide a reliable theory for
radiative processes  involving short wavelengths. These changes  may
correspond to a departure from the Point-Charge  model of elementary
particles  which  provides the basis of the present theory. Already in
the classical  theory the point-Charge..  model involves some dificulties
in interpretation and applicationt  even though it leads to weil-defined
equations of motion, as given in 5 78, so it is not surprising that the
passage to the quantum  theery brings in further  difficulties.
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